
P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
3
5

Kaon-kaon scattering at maximal isospin from
N f = 2+1+1 twisted mass lattice QCD

C. Helmes∗, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, C. Urbach, M. Werner
University of Bonn
E-mail: helmes@hiskp.uni-bonn.de

We present results for the interaction of two kaons at maximal isospin. The calculation is based
on 2+1+1 flavour gauge configurations generated by the ETM Collaboration (ETMC) featuring
pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing.
The elastic scattering length aI=1

0 is calculated at several values of the bare strange quark and
light quark masses. We find MKa0 = −0.397(11)(+0

−8) as the result of a chiral and continuum
extrapolation to the physical point. This number is compared to other lattice results.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:helmes@hiskp.uni-bonn.de


P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
3
5

Kaon-kaon scattering at maximal isospin from N f = 2+1+1 twisted mass lattice QCD C. Helmes

1. Introduction

We investigated the scattering of 2 K+-mesons in the maximum isospin channel of I3 = 1.
Due to SU(3)-symmetry breaking by the – compared to the light quark – heavy strange quark,
χ-PT often suffers from sizeable corrections. Lattice QCD offers a non-perturbative way to access
this interaction and helps in understanding the dynamics of the underlying strong interaction at low
energies. We focus on the elastic scattering length of this system which has not been determined
experimentally. The analysis of the K+-K+-system proceeds very similarly to the one of π-π-
scattering at I3 = 2 detailed in ref. [1]. Our study is the first to take into account three values of the
lattice spacing.

2. Elastic Scattering in Lüscher’s formalism

The scattering length a0 for the scattering of two mesons is defined by the low energy limit

lim
q→0

qcotδ0(q) =−
1
a0

, (2.1)

where q is the momentum transfer in the center of mass frame and δ0 the phaseshift of the outgoing
wave function. In a series of papers, [4, 5], Lüscher related the scattering length to the energy shift
δE of a system of two particles [5] in a finite volume. This energy shift is the deviation of the total
energy of the interacting two particle system, EKK , from its expected value in the absence of the
interaction between the two particles, 2EK . For the case of two K+-mesons at maximal isospin in
the center of mass frame it reads:

δE I=1
KK = EKK−2EK =− 4πa0

MKL3

[
1+ c1

a0

L
+ c2

(a0

L

)2
]
+O(L−6) ,

c1 =−2.9837297, c2 = 6.375183 ,
(2.2)

with the spatial lattice extent L and the kaon mass MK , where the kaons are at rest.

3. Lattice Action and Operators

We work with Wilson twisted mass Lattice QCD (tmLQCD) at maximal twist introduced in
ref. [6]. This guarantees automatic O(a) improvement of all physical quantities of interest as shown
in ref. [7]. The gauge configurations have 2+1+1 dynamical quark flavours and were generated by
the ETMC. Their input parameters and the number of evaluated configurations are stated in tab. 1.
In total 3 different lattice spacings in the range from 0.619 fm to 0.885 fm and a pion mass range
from 230 MeV to 450 MeV build a sound basis for continuum and chiral extrapolations. In this
analysis we use twisted mass light valence quarks at maximal twist and Osterwalder-Seiler (OS)
strange valence quarks on a Wilson twisted mass fermion-sea. This mixed action approach enables
tuning of the valence strange quark mass to its physical value without having to regenerate gauge
configurations. The cost of this is introducing small unitarity breaking effects. The Dirac operator
for the light sector (used as valence and sea Dirac operator) reads:

D` = DW +m0 + iµ`γ5τ
3 , (3.1)
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ensemble β aµ` aµσ aµδ (L/a)3×T/a Nconf

A30.32 1.90 0.0030 0.150 0.190 323×64 280
A40.24 1.90 0.0040 0.150 0.190 243×48 404
A40.32 1.90 0.0040 0.150 0.190 323×64 250
A60.24 1.90 0.0060 0.150 0.190 243×48 314
A80.24 1.90 0.0080 0.150 0.190 243×48 306
A100.24 1.90 0.0100 0.150 0.190 243×48 312
B35.32 1.95 0.0035 0.135 0.170 323×64 250
B55.32 1.95 0.0055 0.135 0.170 323×64 311
B85.24 1.95 0.0085 0.135 0.170 323×64 296
D30.48 2.10 0.0030 0.120 0.1385 483×96 369
D45.32sc 2.10 0.0045 0.0937 0.1077 323×64 301

Table 1: The gauge ensembles used in this study. The labelling of the ensembles follows the
notation in Ref. [8]. In addition to the relevant input parameters we give the lattice volume and the
number of evaluated configurations, Nconf.

with the Wilson Dirac operator DW and the Pauli matrices τ i , i = 1,2,3 acting in flavour space.
The parameter µ` denotes the twisted mass ±µ` for the spinor χ` on which it acts (χ` = (u,d)T ).
The spinors χ` (χ̄`) are connected to their physical counterparts, ψ` (ψ̄`), via a chiral rotation,

ψ̄` = χ̄` exp
(

iγ5τ3
ω

2

)
, ψ` = exp

(
iγ5τ3

ω

2

)
χ` , (3.2)

around the twist angle ω . Working at maximal twist means ω = π/2. For the OS strange valence
quarks we use the operator:

Ds = DW +m0 + iµsγ5 . (3.3)

Further details of the formulation of the OS action can be found in ref. [9]. The gauge configu-
rations have been generated with the Iwasaki gauge action of ref. [10]. The ensembles cover 11
values of aµl at 3 different lattice spacings a. We calculated strange quark propagators for 3 differ-
ent strange quark mass parameters aµs per lattice spacing. Tab. 2 states the corresponding values
of aµs for every β . The one and two particle operators, in the physical basis denoted by K(t) and
OKK(t),

K(t) = ∑
~x

ψ̄s(~x, t)γ5ψu(~x, t) , OKK(t) = K(t)K(t) ,

respectively, lead to the correlation functions of the single kaon CK(t) and the two kaon system
CKK(t). They are defined as follows:

CK(t) = 〈K(t)K†(0)〉 , CKK(t) = 〈OKK(t)O
†
KK(0)〉 .

We extract the ground state energy of each correlation function at times large enough such that
excited states have decayed sufficiently. Because we work at zero total momentum this approach
yields the lattice kaon mass MK from CK and the total energy EKK of the K+-K+-system from CKK .
Unfortunately, the spectral decomposition of CKK gets distorted by terms constant in Euclidean
time, preventing the naive extraction of EKK , as detailed in ref. [11]. Following ref. [11] we use a
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β 1.90 1.95 2.10

aµs 0.0185 0.0160 0.013
0.0225 0.0186 0.015
0.0246 0.0210 0.018

a [fm] 0.0885(36) 0.0815(30) 0.0619(18)

Table 2: Values of the bare strange quark mass aµs used for the three β -values and values of the
lattice spacing a

ratio of correlation functions

R(t +a/2) =
CKK(t)−CKK(t +a)

C2
K(t)−C2

K(t +a)
, (3.4)

which can be shown to behave, for large Euclidean times t, like

R(t +a/2) ∝ AR
(
cosh

(
δEKKt ′

)
+ sinh

(
δEKKt ′

)
coth

(
2MKt ′

))
, t ′ = t +

a
2
− T

2
. (3.5)

Here T is the total time extent of the lattice. δEKK is obtained by fitting eq. 3.5 to the lattice
data of eq. 3.4. We determine a0 by inserting MK , L and δEKK into eq. 2.2 and solving for a0.
We apply quark field smearing in a Laplacian-Heaviside (LapH) manner to our quark fields, as
proposed in ref. [12], and calculate all-to-all propagators. To reduce the computational costs we
combine the LapH method with a stochastic approach (sLapH) as suggested in ref. [13], resulting
in 5 (3) random vectors per light (strange) quark perambulator used in the computation. Diluting
the random vectors further reduces the stochastic noise. A more detailed description of the sLapH
method can be found in reference [1] and references therein.

4. Analysis Strategies

The bare quark mass parameters aµl and aµs are related to their physical counterparts via the
renormalisation constant ZP: m f = µs/ZP. To work at the physical strange quark mass value we
need to specify how to set ms in our calculation. Setting the strange quark mass in different ways
serves as a consistency check.

Method A consists of fixing aµs to the value that reproduces the physical value of the difference

∆
2 = r2

0(M
2
K−M2

π/2) (4.1)

on each ensemble. The lattice scale is set using the Sommer Parameter r0 = 0.474(14) fm and the
values for the lattice spacing determined in ref. [14]. Tab. 2 states the values employed for each
lattice spacing.

Method B uses the experimental squared kaon mass to fix the strange quark mass via a fit to data
for the squared kaon mass as a function of the light and strange quark masses

(r0MK)
2 = P̄0(r0ml + r0ms)

[
1+ P̄1r0ml + P̄2

(
a
r0

)2
]

KFSE
M2

K
, (4.2)
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which includes lattice artifacts of O(a2) [14]. After the fit the continuum values of (r0MK)
2 and

r0ml from ref. [14] are used to determine the continuum value of r0ms.
With the values of MKa0 interpolated to the strange quark mass of Method A or B we extrapo-

late the data for MKa0 in ml and a to the point of mphys
l determined in ref. [14] and the continuum.

In leading order chiral perturbation theory MKa0 depends linearly on ml . Because of automatic
O(a)-improvement we only have to consider discretisation effects of O(a2). In the continuum and
the limit µl → 0, we have a residual value of MKa0, stemming from the non-zero strange quark
mass value, giving rise to the parameter P2 in eq. 4.3. Therefore, we fit the function

MKa0 = P0(r0Mπ)
2 +P1

(
a
r0

)2

+P2 (4.3)

to our data at the physical strange quark mass.

5. Results
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1.a: Chiral and continuum extrapolation of
MKa0 with ms fixed via ∆2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(r0Mπ)
2

0.44

0.42

0.40

0.38

0.36

0.34

0.32

0.30

0.28

M
K
a

0

a=0.0885 fm

a=0.0815 fm

a=0.0619 fm

cont.

a=0.0885 fm

a=0.0815 fm

a=0.0619 fm

Physical Point

1.b: Same as fig. 1.a, but with ms fixed via Mexp
K .

Error bands suppressed for visibility

The fit results for the methods A and B are displayed in fig. 1.a and fig. 1.b, respectively. We
show the ms-interpolated data of MKa0 as a function of (r0M2

π) and the lattice spacing (red, blue
and green for rising β ). In addition, the fitted functions from eq. 4.3 are shown for each value
of the lattice spacing. The continuum extrapolated value of MKa0, extrapolated to the physical
value of M2

π together with the continuum version of eq. 4.3 is displayed as well. Despite different
discretisation effects, the extrapolated values for MKa0 calculated with method A and B agree well
within errors. They are compiled in table 3. To investigate the different discretisation effects we
made a combined fit of the data from methods A and B with common parameters P0 and P2 and
different parameters P1 and P′1 for the dependence on the squared lattice spacing a2. Differences in
the discretisation effects should be taken into account by P1 and P′1. At the same time the parameters
P0 and P2 do not change. The extrapolated value of MKa0 is compatible with the ones from method
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Method A Method B A+B combined p-value weighted

(MKa0)phys −0.409(15) −0.397(11) −0.405(12) −0.397(11)(+0
−8)

χ2/dof 0.38 0.73 0.65 -
p-value 0.93 0.67 0.86 -

Table 3: Comparison of the results for MKa0 at the physical point.

A and method B, respectively. The outcome of the combined fit is shown in fig. 2.a and 2.b. The
data are the same as shown in fig. 1.a and 1.b. The curves now are results from the fit of eq. 4.3
with the common parameters P0 and P2 and the parameters P1 (fig 2.a) and P′1 (fig 2.b) coming from
the different lattice spacing dependence. The fit models both data sets equally well, confirming
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2.a: Combined fit of eq. 4.3 to MKa0 from method A
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2.b: Same as fig. 2.a with data from method B

that the difference stems from discretisation effects in setting the strange quark mass. To estimate
the systematic uncertainty of the Methods A and B we calculate the p-value weighted median of
the results from A and B. The results are shown in tab. 3. The 68.54% confidence interval of the
combined and weighted distribution of A and B serves as an estimate of the systematic uncertainty.

The NPLQCD collaboration also calculated MKa0 in ref. [2]. The PACS-CS collaboration un-
dertook an investigation of scattering lengths for systems of two pseudoscalar mesons in ref. [3].
Tab. 4 shows the weighted result for MKa0 for our work in comparison to the calculations of
NPLQCD and PACS-CS. From tab. 4 deviations beyond the statistical level of the three analyses

Collaboration ETMC(this work) NPLQCD PACS-CS

MKa0 −0.397(11)(+0
−8) −0.352(16) −0.310(10)(32)

Table 4: Comparison of the results of MKa0 for this work, the work of NPLQCD and the work
of PACS-CS. Statistical and systematic uncertainties shown in the first and second parentheses,
respectively. For the analysis by NPLQCD stated uncertainty from both uncertainties added in
quadrature.
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become visible. These differences might be explained with lattice artifacts not taken into account
by NPLQCD and PACS-CS at the same level of control.
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