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1. Introduction

Although parton distribution functions are the fundamental objects describing the inner struc-
ture of hadrons, they were so far not calculated from first principles. In the past, lattice QCD has
successfully been employed for the computation of hadronic spectra and form factors, for instance.
Yet calculations of quark distributions are still missing, since they are given by light-cone correla-
tion functions and light-like distances are not accessible on an Euclidean lattice.

A new method to deal with this problem was proposed in Ref. [1] and employs the compu-
tation of a purely spatial quasi-distribution in a finite momentum frame. How to relate this quasi-
distribution to the physical PDF and general studies of this method have already been addressed in
a handful of papers, e.g. [2, 3, 4, 5, 6, 7].

A crucial point when making the connection to PDFs is a large momentum limit for the nucleon
boost. On the lattice, this provides a challenge, since large momentum nucleon observables are
known to be very noisy. Thus, we study the effect of including a momentum dependent quark field
smearing [8] into our calculation, in order to improve the quality of the signal, especially for large
nucleon momenta.

A comprehensive work on the calculation of PDFs with more elaborate studies of the recent
developments and our newest results can be found in our latest paper [9].

2. Lattice calculation & momentum smearing

The quasi-distributions are computed from

q̃(x,Λ,P3) =
∫

∞

−∞

dz
4π

e−izk3〈P|ψ̄(z)γ3W3(z,0)ψ(0)|P〉 , (2.1)

where Wj(z,0) is the Wilson line from 0 to z in the spatial j direction, k3 = xP3 and the Euclidean
momentum is P=(0,0,P3,P4). It is required that the Wilson line and the spatial nucleon momentum
boost point into the same direction. In lattice QCD, one can compute matrix elements of operator
as suitable ratios of three- and two-point correlation functions. The full set of PDFs can be accessed
by using three-point functions where the inserted operators have the Dirac structures

• γ3, for the case of the unpolarized momentum quasi-distributions q̃(x,Λ,P3) ;

• γ3γ5, for the case of the helicity quasi-distributions ∆q̃(x,Λ,P3) ;

• γ3γ j ( j = 1,2), for the case of the transversity quasi-distributions δ q̃(x,Λ,P3) .

Due to the rotational invariance on the lattice, one is certainly not restricted to the 3-direction
and can easily generalize the operators to the other two directions. In order to obtain a quasi-
distribution from the computed matrix elements a Fourier transformation has to be performed. The
quasi-distribution can be related to the physical PDF by a one-loop matching and a mass correction.
Details for these steps can be found in Refs. [4, 5], for example.

In former studies we applied standard Gaussian smearing to the nucleon fields in order to im-
prove the overlap to the nucleon ground state. This, however, is only valid for momentum zero and
deteriorates the signal for large momenta. Thus, in Ref. [8] a new type of smearing, the momentum
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smearing, is proposed. This smearing is constructed in a way to increase the overlap of the used
nucleon field with a momentum boosted nucleon ground state. In contrast to the Gaussian smearing
quark fields are smeared according to

Smomψ(x) =
1

1+6α
(ψ(x)+α ∑

j
U j(x)eik ĵ

ψ(x+ ĵ)) , (2.2)

where k = ζ P, with P the lattice momentum of the nucleon and ζ a tunable parameter. This form
looks very similar to the definition of Gaussian smearing with an addition of an exponential factor
multiplying the gauge links in the direction of the momentum boost. In practice, we use a Gaussian
smearing routine with the standard nucleon parameters (50 steps, α = 4) and include a gauge field
with a complex phase Ũ j(x) =U j(x)eik ĵ. For now we follow [8] and choose ζ to be 0.45.

All calculations presented here were performed on an ETMC (European Twisted Mass Col-
laboration) gauge field ensemble [10], with N f = 2 + 1 + 1 flavors of maximally twisted mass
fermions and a volume of 323×64. The bare coupling is set to β = 1.95, corresponding to a lattice
spacing of a≈ 0.082 fm. The twisted mass parameter is aµ = 0.0055, which gives a pion mass of
mPS ≈ 370 MeV. Because we still do not have a proper renormalization of the involved operator we
apply 5 steps of HYP smearing [11] to the gauge links in the Wilson line. This is expected to bring
the values of the renormalization constants close to their tree-level values.

For the computation of the matrix elements we used only 50 gauge configurations with 3 se-
quential propagators (one for each spatial direction), resulting in 150 measurements. In case of the
unpolarized momentum distribution and P3 = 10π/L, we used 100 gauge configurations. Currently
the source-sink separation is set to ts = 8a, in order to get a better signal. Larger separations and
thus the influence of excited states will be studied in the future.

3. Results

In order to show the quality of our lattice calculation, we show the unrenormalized matrix
elements for the momentum, the helicity and transversity cases in Figs. 1, 2 and 3. To demonstrate
the capabilities of the momentum smearing we show results for momenta up to P3 = 10π/L for the
unpolarized case. When comparing to previous results that employ the stochastic method [9] one
can see that a factor of ≈ 200 less measurements is necessary to obtain results with a comparable
uncertainty for a single momentum.

Consequently, in Fig. 4 we show the momentum dependence of the unpolarized momentum
quasi-distribution. One can see that for larger momenta there is a trend that points into the direction
of the phenomenological PDF curves. However, in order to make proper statements here we will
need probably even larger momenta and a procedure to extrapolate to very large or even infinite
momentum. We show only the quasi-distributions in this plot, since the influence of the matching
and mass correction is very small for momenta larger than P3 = 6π/L. This can especially be seen
when looking at the results for the helicity and transversity distributions for P3 = 6π/L in Fig. 5.
Here, the difference between the quasi-distribution, the finite mass distribution and the physical
PDF is almost negligible. For even larger momenta there should be no visible difference.
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Figure 1: Unrenormalized matrix elements of the vector operator (for the momentum distribution) and three
different nucleon boost momenta, left: real part, right: imaginary part.
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Figure 2: Unrenormalized matrix elements of the axial-vector operator (for the helicity distribution) and
P3 = 6π/L, left: real part, right: imaginary part.
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Figure 3: Unrenormalized matrix elements of the tensor operator (for the transversity distribution) and
P3 = 6π/L, left: real part, right: imaginary part.

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

x
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Figure 4: Momentum quasi-distribution for three different nucleon momenta. MSTW [12], CJ12 [13] and
ABM11 [14] are phenomenologically extracted distributions plotted for orientation.
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Figure 5: Quasi-distribution, finite nucleon mass distribution and PDF after nucleon mass corrections for
P3 = 6π/L, left: helicity, right: transversity. DSSV08 [15] and JAM15 [16] are phenomenologically ex-
tracted distributions plotted for orientation.

4. Conclusion and Outlook

In this proceeding we gave a brief update on our current effort to compute parton distribution
functions of the nucleon with lattice QCD methods. We especially focused on the recent inclusion
of momentum dependent smearing. We were able to show that by using this smearing in combina-
tion with the sequential method it is possible to reduce the error for larger momenta up to a factor
of 200 in comparison to our previous work where we used the stochastic method. We applied this
new smearing to the momentum, the helicity and the transversity distribution.

In the future, the application of momentum smearing will thus enable us to reach sufficiently
large momenta in order to make a connection to the physical light cone distribution. When other
systematic effects, e.g. the quark masses and cut-off effects and, in particular, the question of renor-
malization, are under control, we will be able to tell, if PDFs can be extracted from a lattice QCD
calculation.
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