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Momentum-space derivatives of matrix elements can be related to their coordinate-space moments
through the Fourier transform. We derive these expressions as a function of momentum transfer
Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite
volume moments by studying the spatial dependence of the lattice correlation functions. This
method permits the computation of not only the values of matrix elements at momenta accessible
on the lattice, but also the momentum-space derivatives, providing a priori information about the
Q2 dependence of form factors. As a specific application we use the method, at a single lattice
spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form
factor at various Q2, whence the isovector charge radius. The method has potential application in
the calculation of any hadronic matrix element with momentum transfer, including those relevant
to hadronic weak decays.
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1. Introduction

Direct calculation of momentum-dependent slopes of hadronic form factors allows for model
independent determinations of physical observables such as the charge radius of the proton. Cur-
rent experimental tension of the proton charge radius stand at a startling 7σ between electron and
muonic measurement [1]. A model independent lattice QCD calculation of the charge radius at
the 2% level is necessary to discriminate the 4% difference between electron and muon probes.
Similarly, there is a 2σ tension between the nucleon axial mass, parameterising the Q2 depen-
dence of the nucleon axial form factor FA(Q2) under a dipole ansatz and related to the inverse of
the axial radius, obained from quasi-elastic scattering and electroproduction experiments [2]. The
nucleon axial mass is the leading uncertainty when interpreting neutrino scattering experiments in
the quasi-elastic regime. A direct lattice QCD calculation of FA(Q2) with momentum transfer up
to Q2 = 100 GeV2, in conjunction with the corresponding derivatives with respect to Q2 may be
used together in a model independent z-expansion [3] in order to constrain FA(q2). The uncertainty
of 1% for FA(0), required to interpret the next generation neutrino experiments such as the Deep
Underground Neutrino Experiment (DUNE), is unobtainable with current lattice techniques and
available computational resources [4]. At higher levels of precision, isospin and electromagnetic
corrections dominate. Similarly, in conjunction with precision flavor physics experiments, lattice
QCD calculations of the shape of form factors for semi-leptonic decays such as Bs→ K`ν [5], are
used to constrain Standard Model parameters such as |Vub|. The dominant error at large momen-
tum transfer comes from the uncertainty in the form factors. The additional information provided
by explicit lattice calculations of the derivatives of form form factors may be used to reduce the
uncertainties in the range of Q2 where form factors are computed.

Application of coordinate-space moment methods was first introduced in the mid 90’s as a
way to access the slope of the Isgur-Wise function ξ (ω) at zero-recoil, in order to interpret exper-
imental results near zero-recoil from B→ D semi-leptonic decays to be used to provide a value
for |Vcb| [6]. At the turn of the millenium, moment methods were used to calculate the slope of
the energy-momentum tensor form factor, which is directly related to the the angular momentum
contribution to the spin of the nucleon [7][8]. Recently, there is revitalized interest in coordinate-
space moment methods both in applications to hadronic vacuum polarization calculations [9][10] in
particle physics, and direct calculations of the anomolous magnetic moment of the nucleon and nu-
cleon radii in nuclear physics [11]. In parallel, momentum-space derivative methods are also being
explored to access similar nucleon structure calculations such as the anomolous magnetic moment
and various nucleon radii [12][13]. In these proceedings, we present a coordinate-space method
that directly calculates the slope of single particle form factors with respect to 3- and 4-momentum
squared at any lattice accessible momenta.

2. Formalism

Given a three-point correlation function with the initial state at rest, and current insertion with
three-momentum k, where k points in the z-direction without loss of generality, as shown in Fig. 1,
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Figure 1: Kinematics of the three-point correlator with baryon initial and final states. We work in the rest
frame of the final hadron. The diagram for semi-leptonic decays of mesons involves only one spectator
quark, but involves the same kinematics.

the three-momentum-projected three-point has the general form,

C3pt(t, t ′) = ∑
~x,~x′

〈
Na

t,~xΓt ′,~x′N
b
0,~0

〉
e−ikx′z , (2.1)

translational invariance allows us to shift the source to the origin ~xsrc = 0 and the sink to ~x ≡
~xsnk−~xsrc. Since the sink has zero three-momentum, the only momentum dependence left is at
the current insertion. The operators Nb and Na are the source and sink interpolation operators
respectively, while the superscripts a and b label the nucleon interpolating operators [14, 15]. The
operator Γ is a generic current insertion at position~x′ ≡~xJ−~xsrc.

The derivative of the three-point correlator with respect to k2 follows,

C′3pt(t, t
′) =∑

~x,~x′

−x′z
2k

sin
(
kx′z
)〈

Na
t,~xΓt ′,~x′N

b
0,~0

〉
, (2.2)

where in Eq. (2.2), the cosine component vanishes due to symmetry. In the limit of zero momentum,
the k2→ 0 limit of the integrand is given by L’Hôpital’s rule,

lim
k2→0

C′3pt(t, t
′) =∑

~x,~x′

−x′2z
2

〈
Na

t,~xΓt ′,~x′N
b
0,~0

〉
. (2.3)

Given a two-point correlator with three-momentum k in the z-direction,

C2pt(t) = ∑
~x

〈
Nb

t,~xNb
0,~0

〉
e−ikxz , (2.4)

we can derive the derivative of the two-point correlator with respect to k2,

C′2pt(t) =∑
~x

−xz

2k
sin(kxz)

〈
Nb

t,~xNb
0,~0

〉
, (2.5)

where analogous to the moment of the three-point correlator, the cosine contribution vanishes due
to symmetry. Consequently, in the zero-momentum limit,

lim
k2→0

C′2pt(t) = ∑
~x

−x2
z

2

〈
Nb

t,~xNb
0,~0

〉
. (2.6)

The construction of the moment of the two-point correlator is similar to the moment of the three-
point correlator with the exception that the moment now depends on the final state position xz
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instead of the current insertion position x′z. In both cases, the spatial moments at all momenta are
even, resulting in a non-vanishing correlator under the Fourier transform, explicitly circumventing
the concern raised in Ref [16]. Given prior computational investment in generating the propagators
and sequential propagators, the generation of the moments of correlators only differ during the
Fourier transform, and therefore require negligible additional computing time to construct.

2.1 Interpretation

In the rest frame of the final hadron, the time behaviour of the three-point correlator of Eq. (2.1)
is given by,

C3pt(t, t ′) =∑
n,m

Z†a
n (0)Γnm(k2)Zb

m(k
2)

4Mn(0)Em(k2)
e−Mn(0)(t−t ′)e−Em(k2)t ′ , (2.7)

defining

Z†a
n (0)≡ 〈Ω|Na|n, pi = (0,0,0)〉 (2.8)

Zb
m(k

2)≡ 〈m, pi = (0,0,k)|Nb |Ω〉 (2.9)

Γnm(k2)≡ 〈n, pi = (0,0,0) |Γ|m, pi = (0,0,k)〉 (2.10)

where Mn(0) as the rest mass of the n-th state of the, and Em(k2) =
√

M2
m + k2 is the energy. The

initial and final states created from and annihilated into the vacuum |Ω〉 have overlap with an infinite
tower of states labelled by n and m with corresponding eigenvalues Mn and Em respectively. We
have performed a Wick rotation to imaginary time, yielding a sum of terms that decay exponentially
in time. At large time separations, we recover the ground state signal.

Taking the derivative of Eq. (2.7) with respect to k2 yields,

C′3pt(t, t
′) =∑

n,m
C3pt

nm (t, t
′)

{
Γ′nm(k

2)

Γnm(k2)
+

Zb′
m (k

2)

Zb
m(k2)

− 1
2[Em(k2)]2

− t ′

2Em(k2)

}
, (2.11)

where C3pt
nm are the individual n and m contributions to the three-point correlator, and the prime

denotes the first derivative with respect to three-momentum k2. The derivative does not act on Za,
which is in the rest frame of the initial particle regardless of momentum transfer at the current.
The derivative only acts on Zb where the operator Nb is constructed from non-local (smeared)
interpolating operators, and thus has momentum dependence. We can obtain Zb′

m by looking at the
moment of the two-point correlator constructed from the operator Nb, as we now show. We begin
by using completeness to write the two-point correlator as

C2pt(t) =∑
m

Zb†
m (k2)Zb

m(k
2)

2Em(k2)
e−Em(k2)t , (2.12)

where we project states to definite momentum k. Applying the k2 derivative to the right-hand-side
of Eq. (2.12) yields

C′2pt(t) =∑
m

C2pt
m (t)

(
2Zb′

m (k
2)

Zb
m(k2)

− 1
2[Em(k2)]2

− t
2Em(k2)

)
, (2.13)
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with respect to the four-momenta, qµ ≡ (Em(k)−Mn,0,0,k), such that Q2 =−q2, where for a fixed
three-momentum k the four-momentum depends on the energies of the incoming and outgoing
states. The connection between the three- and four-momentum derivatives arises from the chain
rule,

∂

∂k2 Γnm =
∂Q2

∂k2
∂

∂Q2 Γnm =
Mn√

(Mm)2 + k2

∂

∂Q2 Γnm. (2.14)

2.2 Remarks

Correlators constructed from coordinate-space moment methods can have zero overlap with
states at zero momentum, and in particular the zero-momentum ground state, and an example in
Ref. [16] was instead shown to have overlap starting with the lowest non-zero lattice momentum
mode. The subtlety lies in the fact that in Ref. [16], an odd spatial moment (or more specifically
a linear moment) is taken in order to calculate the anomolous magnetic moment. Naively, as one
takes the projection to zero momentum with an odd spatial moment, the correlator would vanish
due to the oddness of the spatial integral. However, the cancellation does not occur when an even
spatial moment is constructed, and is in fact illustrated in a second example given in Ref. [16]. We
derive in the following sections the moment correlator and fit ansatz, and show that for all values
of momenta, even spatial moments are constructed, yielding overlap with the desired ground state.

3. Charge radius of the proton

We demonstrate our method by calculating the charge radius of the proton on the 2+1 flavor
William and Mary / JLab isotropic clover ensemble. We use the 0.12 fm lattice spacing ensemble
with a box size of N3

s ×Nt = 243× 64 with a pion mass of 400 MeV. To minimize the dominant
error, which is the finite volume effects experience by the valence quarks, we work on a doubled
lattice in the z-direction, N2

x,y×Nz×Nt = 242× 48× 64. A total of 480 configurations with 16
sources are analyzed in the follow results.

3.1 Correlator analysis

We perform a Bayesian constrained curve fit simultaneously to the two-point correlator, three-
point correlators, and their respective moments. For the three-point correlator, we include two sink
locations to disentangle excited state contributions. Furthermore, we work with Gaussian smeared
source and sink operators to suppress these excited states. Finally, we only study the connected
contribution to the vector form factor of the proton.

The ground state priors are motivated from looking at the standard effective mass and scaled
correlator plots. The width of these ground state priors are orders of magnitude wider than the
posterior distribution, rendering them effectively unconstrained. The excited state energies are
defined as a tower of splittings with lognormal distributions where the mean is 2mπ and the width
is of the same order of magnitude. Priors for the excited state overlap factors, matrix elements, and
slopes are chosen to have a mean of zero, with a width that is five times the ground state central
value.

We demonstrate full control over fit systematics by checking for stability under varying fit
region, ground state prior widths and number of states included in the fit ansatz. In Fig. 2, we
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Figure 2: (Left) Fit of Fu
1 , the connected contribution to the proton vector form factor. For all relevant fits,

the two-point correlator fit region spans time separations of 2 to 10, the moment of the two-point correlator
spans time separations of 3 to 11. The three-point correlator with Tsnk = 10 is fit with current insertion times
of 2 to 8, while Tsnk = 12 has time separations spanning 2 to 10; the corresponding three-point moments fit
regions span 4 to 8 and 4 to 9 for the two sink separations respectively. For the preferred fit with 4 states
in the fit ansatz, the χ2

aug/d.o.f. is 2.0, with the data contributing to 80% of the total χ2; the augmented-χ2

is the sum of the χ2 contribution from data and the χ2 contribution from priors [17]. (Right) We check
stability under fitting over subsets of data, for simultaneous fits of 2: exclusive two-point, 2+ 2′:two-point
plus two-point moment, 2+3: two-point with three-point, all: two-point, two-point moment, three-point, and
three-moment.

plot our result for the vector form factor Fu
1 at three different lattice momenta, and show control

of excited state systematics. The preferred fit is marked by the black square, with corresponding
slopes extracted from the simultaneous correlator fit. We vary the number of states in our fit ansatz
from 2 (red circle), 3 (green diamond), and 5 (blue triangle), and observe that with 4 or more states,
the central values of Fu

1 are stable. We further compare the value of Fu
1 against a simultaneous

two- and three-point fit (pink cross), and observe consistency. The three panels on the right side
of Fig. 2 compare the ground state overlap factors obtained from a two-point correlator only, two-
point correlator with its moment, two- and three-point correlators, and finally the full simultaneous
fit to all correlators. The consistency of the ground state overlap factors between different subsets
of data further demonstrate confidence in our fit analysis. We observe promising results from this
method; the slopes for the three-values of lattice momenta agree well with expectation, and the
uncertainty of the slopes are of the same order, but slightly larger, than the uncertainty on Fu

1 .

4. Outlook

In these proceedings, we present a method to calculate slopes at arbitrary lattice momenta for
matrix elements directly on the lattice. Immediately interesting applications include calculating
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the isovector axial radius to obtain FA(Q2) and the charge radius of the proton. In particle physics,
this method may help further constrain CKM phenomenology through stronger constraints on the
shape of weak decay form factors. The proposed method is computationally cheap and easy to
implement, therefore is suitable for a wide range of physics applications.
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