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We calculate the pion transition form factor Fπ0γ∗γ∗(q
2
1,q

2
2), which describe the interaction of

an on-shell pion with two off-shell photons, using lattice QCD simulations with two degenerate
flavors of dynamical quarks. This form factor is the main ingredient in the calculation of the
pion-pole contribution to hadronic light-by-light scattering in the muon g−2, aHLbL;π0

µ . We focus
our study on the spacelike region with photon virtualities up to 1.5 GeV2, not yet measured
experimentally. Several lattice spacings and pion masses are used to extrapolate the results to the
physical point and a comparison with different phenomenological models is performed. Finally,
we use our extrapolated form factor to provide a lattice determinaiton of aHLbL;π0

µ .
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1. Introduction

The anomalous magnetic moment of the muon provides one of the most precise tests of the
Standard Model of particle physics [1, 2] and a persistent discrepancy of about 3− 4 standard
deviations [3] exists between experiment and theory. In the near future, the experimental error is
expected to be reduced by a factor four [4]. The theoretical error is now dominated by hadronic con-
tributions : the hadronic vacuum polarization (HVP) and hadronic light-by-light scattering (HLbL)
and, for the latter, no reliable estimate exists yet and systematic errors are difficult to estimate.
However, recently a dispersive approach was proposed [5] which relates the numerically dominant
pseudoscalar-pole contribution, and the pion-loop in HLbL with on-shell intermediate pseudoscalar
states to measurable form factors and cross-sections with off-shell photons: γ∗γ∗→ π0,η ,η ′ and
γ∗γ∗→ π+π−,π0π0. Within this framework, the pion-pole contribution is obtained by integrating
some weight functions times the product of a single-virtual and a double-virtual transition form
factors for spacelike momenta [1]. In particular, the weight functions turn out to be peaked at low
momenta such that the main contribution to aHLbL;π0

µ arises from photon virtualities below 1 GeV2

[6], a kinematical range accessible on the lattice. From the experimental point of view, only the
single-virtual form factor for the pion Fπ0γ∗γ∗(−Q2,0) has been measured [7] in the spacelike re-
gion Q2 ∈ [0.5,40] GeV2. From the theoretical point of view, the form factor is constrained by the
Adler-Bell-Jackiw (ABJ) anomaly in the chiral limit such that Fπ0γ∗γ∗(0,0) = 1/(4π2Fπ) [8]. The
single-virtual form factor has been computed in the framework of factorization in QCD (operator-
product expansion (OPE) on the light-cone) and one finds the Brodsky-Lepage behavior [9]

Fπ0γ∗γ∗(−Q2,0)−−−−→
Q2→∞

2Fπ/Q2 . (1.1)

Finally, the double-virtual form factor where both momenta become simultaneously large has been
computed using the OPE at short distances. In the chiral limit the result reads [10, 11]

Fπ0γ∗γ∗(−Q2,−Q2)−−−−→
Q2→∞

2Fπ/(3Q2) . (1.2)

Therefore, the double-virtual form factor in the kinematical range of interest [0− 1] GeV2 for
the computation of the HLbL contribution to the muon g− 2 is still unknown and the available
estimates rely on phenomenological models [1, 12]. Previous lattice studies [13] < on the decay
π0→ γγ (form factor at very low momenta). More details on this work can be found in [14].

2. Methodology

In Minkowski spacetime, the form factor of interest is defined via the following matrix element

Mµν(p,q1) = i
∫

d4xeiq1x 〈Ω|T{Jµ(x)Jν(0)}|π0(p)〉= εµναβ qα
1 qβ

2 Fπ0γ∗γ∗(q
2
1,q

2
2) , (2.1)

where q1 and q2 are the photon momenta and p = q1 + q2 is the on-shell pion momentum. Jµ =

∑ f Q f ψ f γµψ f is the hadronic component of the electromagnetic current and we use the relativistic
normalization of states 〈π0(p)|π0(p′)〉 = (2π)3 2Eπ(~p) δ (3)(~p−~p ′). To compute the form factor
on the lattice, we follow the method introduced in [15]. Keeping q2

1,2 < M2
V = min(M2

ρ ,4m2
π), one

can show [16] that the matrix element in Euclidean spacetime is

Mµν = (in0)ME
µν , ME

µν ≡−
∫

dτ eω1τ

∫
d3ze−i~q1~z 〈0|T

{
Jµ(~z,τ)Jν(~0,0)

}
|π(p)〉 , (2.2)
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where ω1 is a real free parameter such that q1 = (ω1,~q1) and n0 denotes the number of temporal
indices carried by the two vector currents. Therefore, one is led to consider the following three-
point correlation function on the lattice

C(3)
µν (τ, tπ) = a6

∑
~x,~z

〈
T
{

Jµ(~z, ti)Jν(~0, t f )P†(~x, t0)
}〉

ei~p~x e−i~q1~z , (2.3)

where τ = ti−t f is the time separation between the two vector currents and tπ = min(t f −t0, ti−t0).
The matrix element with on-shell pion is obtained by considering the large tπ limit. By defining

Aµν(τ) = lim
tπ→+∞

C(3)
µν (τ, tπ)eEπ tπ , Ãµν(τ) =

{
Aµν(τ) τ > 0
Aµν(τ)e−Eπ τ τ < 0

, (2.4)

and using Eq. (2.2), Mµν can be obtained via

ME
µν =

2Eπ

Zπ

(∫ 0

−∞

dτ eω1τ Aµν(τ)e−Eπ τ +
∫

∞

0
dτ eω1τ Aµν(τ)

)
=

2Eπ

Zπ

∫
∞

−∞

dτ eω1τ Ãµν(τ) , (2.5)

where the overlap factor Zπ and the pion energy can be extracted from the asymptotic behavior of
the two-point pseudoscalar correlation function.

3. Lattice computation

This work is based on a subset of the n f = 2 CLS (Coordinated Lattice Simulations) ensembles
generated using the nonperturbatively O(a)-improved Wilson-Clover action for fermions and the
plaquette gauge action for gluons. As shown in Table 1, three lattice spacings in the range [0.05-
0.075] fm are considered with pion masses down to 193 MeV and Lmπ > 4 such that volume effects
are expected to be negligible [17]. For more details on the ensembles, see [19]. The connected part
of the three-point correlation function in Eq. (2.3) has been computing using one ‘local’ vector
current Jl

µ(x) = ∑ f Q f ψ f (x)γµψ f (x) and one ‘point-split’ vector current

Jc
µ(x) = ∑

f

Q f

2
(
ψ f (x+aµ̂)(1+ γµ)U†

µ(x)ψ f (x)−ψ f (x)(1− γµ)Uµ(x)ψ f (x+aµ̂)
)
, (3.1)

whereas the disconnected part is computed using two local vector currents. In the O(a)-improved
theory, the renormalized currents read Jα,R

µ (x) = Zα
V (1+bα

V (g0)amq)
(
Jα

µ (x)+acα
V ∂νTµν

)
with α =

(local,conserved) and where bα
V and cα

V are improvement coefficients. The point-split vector current
satisfies the Ward identity and does not need any renormalization factor: Zc,I

V = 1, bc,I
V = 0 whereas

Zl
V has been computed non-perturbatively in [18, 19]. We neglect the contribution from the tensor

density Tµν(x) such that O(a)-improvement is only partially implemented. We choose the pion
reference frame, ~p = 0, where both photons have back-to-back spatial momenta (~q2 = −~q1) and
the kinematical range accessible on the lattice can be parametrized by

q2
1 = ω

2
1 −~q2

1 , q2
2 = (mπ −ω1)

2−~q2
1 .

We consider multiple values of ~q1 to obtain virtualities up to |q2
1,2| ≈ 1.5 GeV2 as can be seen in

Fig. 1. In this kinematical setup and using the Lorentz structure of the form factor one can show
that only the spatial components are non-zero and can be written

Akl(τ) =−iqkl A(τ) , qkl ≡ εklαβ qα
1 qβ

2 = mπ εkli qi
1 , (3.2)

where A(τ) is a scalar under the spatial rotation group (Ã(τ) is defined in the same way).
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Figure 1: (left) Kinematic reach in the photon virtualities (q2
1,q

2
2) in our setup with the pion at rest, for the

lattice resolution 483× 96 at a = 0.065fm. (Right) The function Ã(τ) (black points) and the VMD (blue
line) and LMD (red line) fits used to describe the tail of the function at large τ for the lattice ensemble F7.

Table 1: Parameters of the simulations: the bare coupling β = 6/g2
0, the lattice resolution, the hopping

parameter κ , the lattice spacing a in physical units extracted from [19].

CLS β L3×T κ a (fm) mπ (MeV) Fπ (MeV) mπL #confs
A5 5.2 323×64 0.13594 0.0749(8) 334(4) 106.0(6) 4.0 400
B6 483×96 0.13597 281(3) 102.3(5) 5.2 400
E5 5.3 323×64 0.13625 0.0652(6) 437(4) 115.2(6) 4.7 400
F6 483×96 0.13635 314(3) 105.3(6) 5.0 300
F7 483×96 0.13638 270(3) 100.9(4) 4.3 350
G8 643×128 0.136417 194(2) 95.8(4) 4.1 300
N6 5.5 483×96 0.13667 0.0483(4) 342(3) 105.8(5) 4.0 450
O7 643×128 0.13671 268(3) 101.2(4) 4.2 150

4. Results

4.1 Extraction of the form factor

In Eq. (2.5), the time integration is performed using numerical data up to τc ≈ 1.3 fm. For
τ > τc, the contribution of the tail is estimated from a fit of our data with the analytical expression
of AVMD

kl (τ) in the vector meson dominance model (VMD), derived in [14] (see the next subsection
for a description of the models). A typical fit for the lattice ensemble F7 is depicted in the right
panel of Fig. 1 where the result using the lowest meson dominance model (LMD) [20] rather that the
VMD is also shown. Finally, the disconnected contribution to the three-point correlation function
has been computed for the lattice ensemble E5 and only for the first three values of the spatial
momentum |~q1|2 = n2(2π/L)2, n2 = 1,2,3. It contributes to less than 1% of the total contribution
and we conclude that the disconnected contribution is negligible at our level of accuracy.

4.2 Fits in four-momentum space

We first compare our results with the VMD model, parametrized by

F VMD
π0γ∗γ∗(q

2
1,q

2
2) =

αM4
V

(M2
V −q2

1)(M
2
V −q2

2)
. (4.1)

Using α = 1/(4π2Fπ) = 0.274 GeV−1, it reproduces the anomaly constraint in the chiral limit.
This model is also compatible with the Brodsky-Lepage behavior (1.1) in the single-virtual case but

3
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Figure 2: Comparison of the VMD, LMD and LMD+V fits for the lattice ensemble O7. The red line
corresponds to the results from our global fit. The VMD model falls-off as F VMD

π0γ∗γ∗(−Q2,−Q2) ∼ 1/Q4 in

the double virtual case and fails to describe the numerical data. Note that points at different Q2 are correlated.

falls off faster than the OPE prediction (1.2) in the double-virtual case. To reduce the number of fit
parameters, a global fit is performed where all lattice ensembles are fitted simultaneously assuming
a linear dependence in both a/aβ=5.3 and ỹ = m2

π/8π2F2
π for each parameter of the model. We

obtain at the physical point

α
VMD = 0.243(18) GeV−1 , MVMD

V = 0.944(34) GeV . (4.2)

As can be seen in Fig. 2, the VMD model leads to a poor description of our data (χ2/d.o.f.= 2.9,
uncorrelated fit), especially in the double virtual case and at large Euclidean momenta. The second
model, the LMD model [20], can be parametrized as

F LMD
π0γ∗γ∗(q

2
1,q

2
2) =

αM4
V +β (q2

1 +q2
2)

(M2
V −q2

1)(M
2
V −q2

2)
. (4.3)

Again, this model reproduces the anomaly constraint and is now compatible with the OPE asymp-
totic behaviour where β =−Fπ/3 is the theoretical preferred estimate (see Eq. 1.2). However, this
model does not reproduce the Brodsky-Lepage behavior for the single-virtual form factor given in
Eq. (1.1). Using α , β and MV as free parameters, we now obtain

α
LMD = 0.275(18)(3) GeV−1 , β =−0.028(4)(1) GeV , MLMD

V = 0.705(24)(21) GeV , (4.4)

with χ2/d.o.f. = 1.3 (uncorrelated fit) (Fig. 2). The first error is statistical and the second error
include systematics as discussed in [14]. Although this model fails to reproduce the Brodsky-
Lepage behavior, it gives a good description of our data in the considered kinematical range. The
anomaly is recovered with a statistical error of 7% and β is compatible with the OPE asymptotic
result given in Eq. (1.2). Finally, the LMD+V model, proposed in Ref. [21], includes a second
vector resonance and can be parametrized by

F LMD+V
π0γ∗γ∗ (q2

1,q
2
2) =

h̃0 q2
1q2

2(q
2
1 +q2

2)+ h̃1(q2
1 +q2

2)
2 + h̃2 q2

1q2
2 + h̃5 M2

V1
M2

V2
(q2

1 +q2
2)+α M4

V1
M4

V2

(M2
V1
−q2

1)(M
2
V2
−q2

1)(M
2
V1
−q2

2)(M
2
V2
−q2

2)
.

(4.5)
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Figure 3: Lattice extrapolations for the VMD, LMD and LMD+V models. (left) Single-virtual form factor.
(right) Double-virtual form factor at Q2

1 = Q2
2.

One main advantage of this model is that it fulfils all the theoretical constraints discussed in Sec. 1
if one sets h̃1 = 0 (which is explicitly done in our fits) and h̃0 =−Fπ/3. In Ref. [21], the masses are
set to their physical values MV1 = mexp

ρ = 0.775 GeV and MV2 = mexp
ρ ′ = 1.465 GeV. The parameter

h̃2 = 0.327 GeV3 can be fixed by comparing with the subleading term in the OPE in Eq. (1.2)
(Ref. [22, 11]) and the parameter h̃5 = −0.166(6) GeV has been determined in Ref. [21] by a fit
to the CLEO data [7] for the single-virtual form factor. To get stable fits, we enforce the constraint
MV1 = mexp

ρ at the physical point but still allowing for chiral corrections. For MV2 , inspired by quark
models, we assume a constant shift in the spectrum and set MV2(ỹ) = mexp

ρ ′ +MV1(ỹ)−mexp
ρ . Finally,

we impose the theoretical constraint h̃0 =−Fπ/3 in the continuum and chiral limit but, again, still
allowing for chiral and lattice artefacts corrections. Using these assumptions, we obtain

α
LMD+V = 0.273(24)(7) GeV−1 , h̃2 = 0.345(167)(83) GeV3 , h̃5 =−0.195(70)(34) GeV , (4.6)

with χ2/d.o.f.= 1.4 (uncorrelated fit). This model also gives a good description of our data as can
be seen in Fig. 2 and turns out to be close to the LMD model in the kinematical range considered
here. The systematic error has been estimated by varying our assumptions on MV1 and MV2 . Again,
the anomaly constraint is recovered within statistical error bars and the values of h̃2 and h̃5 are in
good agreement with phenomenology.

The form factor extrapolated to the physical point for each model is shown in Fig. 3. In the
single-virtual case, the VMD and LMD+V models are in good agreement with the experimental
data whereas the LMD model starts to deviate at Q2 = 1 GeV2. In the double-virtual case, the LMD
and LMD+V models are similar and already close to their asymptotic behavior at Q2 ∼ 1.5 GeV2

where we have lattice data. Finally, using the formalism developed in Ref. [1] and our result for the
form factor, we estimate the pion-pole contribution aHLbL;π0

µ to hadronic light-by-light scattering in

the muon g−2. Our preferred estimate for aHLbL;π0

µ is obtained with the fitted LMD+V model [14],

aHLbL;π0

µ;LMD+V = (65.0±8.3)×10−11 . (4.7)

For comparison, most model calculations yield results in the range aHLbL;π0

µ = (50− 80)× 10−11

with rather arbitrary, model-dependent error estimates, see Refs. [1, 12, 6] and references therein.
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