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1. Introduction

N-parameter is a fundamental scale parameter in asymptotic free gauge theories. The non-
perturbative determination of the-parameter in QCD has its phenomenological importance, and
a huge amount of effort using lattice QCD has been made to the determination. In this study, we
numerically evaluate tha-parameter in th#1S scheme for the SU(3) pure gauge theory by lattice
simulations non-perturbatively using the twisted gradient flow (TGF) scheme recently proposed by
Ramos([].

The gradient flow scheme is one of the application of the gradient flow method, in which the
gauge field is smeared with the so-called flow equation and the smeared gauge field has a nice
perturbative property on the renormalizabili@ B, [4]. Ramos has investigated the TGF coupling
for the SU(2) pure Yang-Mills theor{d]. We extend his study to the SU(3) pure Yang-Mills theory.

In addition to this, we extract th&e-parameter in the TGF scheme and convert it toMigescheme.

This study could be an entirely self-consistent determinationgf for the SU(3) pure gauge
theory with the TGF scheme. Various coupling schemes defined via the gradient flow method have
been proposed and investigated in R&EEH [, [8, [].

The one-loop perturbative relation between the TGF coupling ansi$eoupling is required
to obtain/\ys from Atgr. This is not yet known in the literature, and an ongoing study on the
matching between thdS andTGF schemes is presented by E. Ibanez Bribian and M. Garcia Perez
in this conferencdId]. In this study we employ the Schrodinger functional (SF) schéidl2],
one of the finite size box scheme, as the intermediate scheme to bypassing the direct conversion
from the TGF scheme to th&1S scheme. We numerically evaluate the one-loop relation between
the TGF coupling and the SF coupling by lattice simulations in the weak coupling region to have
the ratioAsg/Ater. Combined with the known ratibsg/ Ay 12, we can obtain\ys/Atcr.

Our strategy to obtainys/Aphys iS summarized as follows:

Nus _ Aus Ask Lmad\ter

Aohys  Ase ATGE LmaxPonys’
whereApnysis a physical mass scale defined through a low energy (hadronic scale) observable, and
Lmax IS @ maximum box size at which the TGF coupling is renormalitgdy is a reference scale
and chosen so that we can make contact with the low-energy Aggieusing the renormalized
coupling constant. We employ the string tensigo or the Sommer scali) as the low energy
observables. The high precision lattice data\far andrg are taken from Refs[I[ [14] and [15|
respectively.

This paper is organized as follows. In sect@nwe explain our simulation setup for the
calculation of the TGF coupling. The numerical results for the step scaling of the TGF coupling,
the low energy observables Innax unit, and the ratio\sg/Atgr are presented in the following
sections. Combining all pieces obtained, we give the preliminary resilf;gf Apnys in the last
section.

(1.1)

2. Simulation setup

We employ the SU(3) Wilson gauge action in a box of diZevith the twisted boundary con-
dition in thex—y plane and periodic in the-t plane. For the details of the definition of the TGF
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coupling, the gradient flow equation, and the twisted boundary condition, we followRetVe
employ the clover leaf definition for the field strength used in the TGF coupling. The renormaliza-
tion scaleu = 1/(cL) = 1/+/8t for the TGF couping is defined through the gradient flow tiraad
the finite box sizé.. In this study we set = 0.3, which defines the scheme, for the renormalization
scale.

We generate the gauge configurations using the heat-bath algorithm and measure the TGF
coupling. In order to compute the TGF coupling we take five values for the latticelsiae: 12,
16, 18, 24 and 32. Several values of the bare cougfing 6/g3 are taken from the rang® €
[6.1,---,10.0] for each lattice size.

3. TGF coupling and Atgr

The discrete beta function at a finite cutoff’‘is defined by

By(U = opa/L) = SFcr(sia/ LLI fg(;Z?%GF(a/ L.B) (3.1)

whereg?:(a/L, B) is the TGF coupling measured @ton a(L/a)* box. We uses= 3/2 for the
step scaling size in this work.

The continuum limit of Eq.[.J) is obtained keeping the value of the renormalized coupling
constang?s(a/L, B) at a fixed valual = g25(a/L, B). To do this we fit all the data evaluated at
L/a=1216,18 24, 32in B = 6.1-10.0 with a polynomial function otianda/L. We obtain

Bs/2(u,a/L) = [0o— 1.76(54)(a/L)%] u? + [01 + 2.83(40)(a/L)?] u®
+[0.00067957) — 0.81(10)(a/L)?] u* + [~0.000060891) + 0.060893) (a/L)?| 1°, (3.2)

wheredp = bg andoy = by — (03/ log[s?]) are the constants with the universal one/two-loop beta
functionsbg,;. We use the fit ansatz incorporating the fact that the cut-off err@(#) in the
pure gauge theory. The error in the numerics indicates the statistical error estimated from a random
re-sampling method assuming a Gaussian distribution in the original data set.

Figuredlshows the discrete beta functiBg(u,a/L) and the fit result. The fit yieldg?/DoF =
0.96(46) indicating a good fitting.

The RG evolution of the coupling can be traced using the discrete beta function, from which
we can extracted th&-parameter. Thé-parameter in the TGF scheme is approximated by

b

- 2 ~2bp . 1

whereg?;£(s"/Lmax) is obtained aften-step RG evolution starting from?ge(1/Lmax). The ap-
proximation becomes accurate Whefr(S"/Lmax) is sufficiently small. We use = 200 and
Eqg. 83 can be used as the definition of theparameter.

In order to make contact with a low energy scale (hadronic scale), it is preferable to take the
sizeLmax to be as large as possible. This is equivalent to evg@gt,—}(l/LmaX) from a larger value.
We take several values fg¢;r(1/Lmax) between 6.0 and 7.0 as the start point. Tdbéows the
resultingLmax/\TGE-
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Figure 1: The discrete beta function for each lattice size (left) and in the continuum limit (right).

g%GF(l/Lmax) I—max/\TGF
6.0 0.580(13)
6.1 0.589(13)
6.2 0.598(14)
6.3 0.606(14)
6.4 0.614(14)
6.5 0.622(14)
6.6 0.630(14)
6.7 0.638(15)
6.8 0.645(15)
6.9 0.652(15)
7.0 0.658(15)

Q%Gp(l/ Lmax) Lmaxy/0 Lmax/To
6.0 1.9244(79) 1.6980(86)
6.1 1.9546(76) 1.7188(85)
6.2 1.9816(77) 1.7415(88)
6.3 2.0022(77) 1.7593(87)
6.4 2.0368(76) 1.7772(86)
6.5 2.0588(76) 1.7969(85)
6.6 2.0858(77) 1.8172(84)
6.7 2.1093(76) 1.8343(85)
6.8 2.1367(77) 1.8483(85)
6.9 2.1587(77) 1.8645(84)
7.0 2.1818(79) 1.8821(84)

4. Physical scale,/o andrg

To fix the physical mass scabgnys we employ the string tensioffo and the Sommer scale
ro. The mass scal@ynys must be counted blymax to relate them with.max/\tcrF obtained above.

We employ the data set of the string tension and the Sommer scale from[E${&4][and
[T respectively. These data are evaluated with the same action used in this study. We evaluate
(Lmax/a)(aApnys) at a fixed value ofi = g%GF(a/ Lmax, ) on several lattice sizdsyax/aandf val-
ues by harmonizing hadronic data and our coupling data. We extrapolate them into the continuum
limit a — O with a linear function in(a/Lmax)2. The results fokmax/0 andLmax/ro are listed in

Tabled

5. A-parameter ratio Asg/AtGr

TheA-parameter ratio between the TGF scheme and the SF scheme is defined by

)
(£)

(5.1)
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Figure 2: The ratio of the SF to the TGF couplings. Figure 3: The continuum limit forcg.

L/a  q(L/a)  x*/DoF|L/a  g(L/a)  x*/DoF
8 —0.02859(92) 1.42 | 12 -0.02492(82) 0.98
10 —0.02793(85) 2.76 | 16 —0.02363(84) 1.11

Table 3: The fit results foicy at each lattice.

wherec(go) is the one-loop coefficient in the SF coupling expanded by the TGF coupling. As the
perturbative calculation is not yet available, we numerically estimate it in a weak coupling region
on the lattice.

In order to compute the TGF coupling and the SF coupling, we tale= 8, 10, 12 and 16
for the lattice size. The configurations are generatgti-at40, 60 and 80 for each lattice size. The
configurations with the SF boundary condition (including the boun@Xg)-improvement term)
is independently generated with the same paramefeandL /a).

Thus we can evaluate the renormalized coupling in both schemes separately at the same bare
couping and the lattice size using the same plaquette action with different boundary condition.
Then the ratigg3(a/L, B)/g2ce(a/L, B) can be obtained and fitted as a functiorgés(a/L, 3).

Thus the one-loop coefficient can be extracted from

g3e(a/L.B)
g%GF(a/Lv B)

co(L/a) =y +c§’(a/L)? +..., (5.3)

where we apply th@(a)-improvement in the SF scheme so that the cut-off err@(&?).

We showgir/g2.r in Figurel@ Lines show the results from linear fitting. The fit results are
summarized in TablB Figure[ shows the extrapolation to the continuum limit. Hédé&?)-
scaling is observed as expected. We obtain

=1+cg(a/L)gisr(@/L,B) + ..., (5.2)

) = —0.00221599),  (x2/DoF~ 1.48), (5.4)

as the one-loop coefficient. Tieparameter ratio is estimated as

Ask
ASfels

= 0.8530(61). (5.5)
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Figure 4: The results foN\ys//0 (left) andro/Ays (right). The dashed lines are average of our results. The
dotted lines are the known valubgs/+/0 = 0.55513) [ androAys = 0.62(2) [, respectively.

6. The A-parameter in the MS scheme

Substituting all pieces obtained so far into HE.I}, we obtainAyg/+/0 andro/\ys. The
results are shown in Figufd and are independent from the choice of the initial condition on
g%GF(l/ Lmax). The statistical error fronhma/ATer dominates the error okyg, as seen by com-
paring the errors in Tabléand2, and Eq.[E.3).

From these data, we estimate thgarameter in th&1S scheme as

Ayis/ VO = 0.527(13)(10), ro/Ays = 0.60515)(5). (6.1)

The first error is the statistical one and the second is the systematic one estimated from the fluctua-
tions by the choice 0G%5r(1/Lmax). Our results are consistent with the known valuggs/ /o =
0.55 j?) from Ref. [I8 andro/\yg = 0.62(2) from Ref. [[7], within 1.20 and0.60 respectively.

The non-trivial part in our analysis is the use d§r/Arcr estimated from the numerical
simulations on the lattice. The consistency of thparameter in th#1S scheme strongly suggests
the validity of the value fo\sg/Atcr in Eq. (5.5 and the one-loop expansion parame@)r in
Eq. £4). The explicit perturbative computation for the one-loop coefficient will reveal the exact

value in near futurdI].
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