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We perform a benchmark study of the step scaling procedure for the ratios of renormalization
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doscalar/scalar cases allow us to obtain the non-perturbative running of the quark mass over a
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X-space and we discuss its advantages and potential problems.
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Step scaling in X-space: running of the quark mass Krzysztof Cichy

1. Introduction

One of the non-perturbative renormalization schemes that can be used on the lattice is the coor-

dinate space (X-space) scheme [1, 2, 3, 4]. In this proceeding, we report shortly on our benchmark

study of combining this scheme with the step scaling technique [5, 6, 7]. A more complete de-

scription of this study is given in Ref. [8]. The step scaling technique allows to reliably connect the

high energy regime where perturbation theory (PT) can be safely applied to the low energy regime

of large volume simulations where hadron matrix elements are evaluated. It consists in performing

several simulations at different lattice spacing and volumes, starting at the coarse, large volume

level and repeating the procedure until the high energy regime of the theory is reached. In the

X-space scheme, the renormalization condition is imposed on correlation functions in coordinate

space at very short distances (around 0.01-0.1 fm) compared to the physical extent of the simulated

box (an order of magnitude larger). This allows to use infinite volume PT to translate results from

the X-space to the MS scheme. The X-space scheme has certain appealing properties with respect

to e.g. the RI-MOM scheme, in particular it is gauge invariant and hence no gauge fixing is needed.

Our study is performed in the quenched approximation, hence our results can be compared

with continuum perturbation theory setting N f = 0. We choose the standard Wilson plaquette

gauge action, using the CHROMA software [9] to generate gauge field configurations. The valence

quarks are twisted mass (TM) fermions [10, 11, 12], automatically O(a)-improved by tuning the

hopping parameter κ to its critical value, such that the PCAC quark mass vanishes [11, 13].

2. X-space renormalization scheme and step scaling

Here, we shortly summarize the main ideas of the X-space renormalization scheme. We con-

sider flavour non-singlet correlation functions of two operators of the form

CΓ(X)≡ 〈OΓ(X)OΓ(0)〉, (2.1)

where OΓ(X) = ψ̄(X)Γψ(X), Γ = {1,γ5,γµ ,γµγ5} ≡ {S,P,V,A}. The renormalization condition is

imposed in the chiral limit,

lim
a→0

〈OX
Γ (X)OX

Γ (0)〉
∣

∣

X2=X2
0
= 〈OΓ(X0)OΓ(0)〉

free,massless
cont , (2.2)

with four-vectors denoted by capital letters, e.g. X = (x,y,z, t) and X2 ≡ x2 + y2 + z2 + t2. Thus,

the renormalized operator is O
X
Γ (X ,X0) = ZX

Γ (X0)OΓ(X), where X0 is the renormalization point,

chosen to satisfy a ≪
√

X2
0 ≪ Λ−1 to keep discretization effects under control and to ease contact

to perturbation theory (Λ is a low-energy scale of the order of a few hundred MeV).

We subtract tree-level cut-off effects by computing the ratio of the tree-level lattice and con-

tinuum correlators, ∆Γ(X). The corrected correlation function is C′
Γ(X) = CΓ(X)/∆Γ(X). Renor-

malization constants (RCs), at the scale µ = 1/
√

X2
0 , are given by

ZX
Γ (X0) =

√

CΓ(X0)
free
cont

C′
Γ(X0)

=

√

CΓ(X0)
free
lat

CΓ(X0)
. (2.3)

In the end, we want to compare with the running of RCs in the MS scheme, which can be accom-

plished by converting the X-space RCs using 4-loop conversion formulae [14].

To investigate the running of RCs, we use the step scaling method [5, 6, 7]. We define the step

scaling function as
ΣX

Γ (µ ,2µ) = lim
a→0

ZX
Γ (2µ ,a)

ZX
Γ (µ ,a)

, (2.4)

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
8
6

Step scaling in X-space: running of the quark mass Krzysztof Cichy

step 32/64 24/48 16/32 8/16

1 β = 9.50(7) β = 9.00 β = 8.62(7) β = 7.90(13)

2 β = 8.62(7) β = 8.24(6) β = 7.90(13) β = 7.18(2)

3 β = 7.90(13) β = 7.56(11) β = 7.18(2) β = 6.61(2)

Table 1: Results of our matching procedure. Each entry contains the appropriate value of matching β and

its error, which is propagated to account for mismatching effects. β = 9.00 is the starting point and hence

has no associated uncertainty.

with µ = 1/
√

X2
0 and where the lattice spacing a as an argument of ZX

Γ indicates that it was reg-

ularized on the lattice. Such defined step scaling function has a well-defined continuum limit that

we want to find on the lattice.

We perform three steps of the step scaling procedure, allowing us to link non-perturbatively the

scales between around 1.5 GeV and 17 GeV. For the estimation of ΣX
Γ (µ ,2µ), we need two sets of

lattices, with spatial extents L and 2L. We look at 3 kinds of points in X-space: (x/a,x/a,x/a,x/a),

(x/a,x/a,x/a,0) and (x/a,x/a,0,0) (where 0 is at different positions, with respective correlators

averaged over them). We refer to them as points of type IV, III and II, respectively. We only exclude

points of type I, (x/a,0,0,0), known to be affected by very large cut-off effects.

3. Ensembles for step scaling

An important step to carry out the step scaling programme is to have a set of gauge ensembles

matched to one another in terms of the physical volume. Such matching can be done in terms of

an effective renormalized coupling, which we define following Creutz [15]. The details of this

procedure can be found in Ref. [8]. Here, we only show the final result in Tab. 1. Each row of this

table contains β values such that the physical volumes are matched, e.g. the volume of a β = 9.50,

L/a = 64 lattice is the same as the one of β = 7.90, L/a = 16. The physical volumes of lattices

in the second (third) row are a factor of 2 (4) larger than the ones of the first row. We note that

uncertainty in matching is propagated to the final results for the step scaling function, see below.

Knowing the matched values of β , the last step before computing the appropriate X-space

correlation functions is to tune the PCAC mass to zero to achieve maximal twist. The resulting

values of the κ parameter are shown in Tab. 2, which is a summary of all our generated ensembles

(apart from the ones only used for matching). We also show the values of the lattice spacings for

all ensembles. At β = 6.61, we can express the value of the lattice spacing in terms of the r0 value.

Using the parametrization of Ref. [16], we find r0/a = 12.76 for this β . Together with our chosen

value of r0 = 0.48(2) fm, we get aβ=6.61 = 0.0376(16) fm and using the results of the matching

procedure, this provides scale setting for all the ensembles.

4. Procedure

We now summarize our procedure:

1. Compute the relevant correlation functions in X-space, at 3 values of the valence quark mass.

2. Extrapolate the correlators to the chiral limit, linearly in aµ .

3. Apply the tree-level correction to the correlators.

4. Use the chirally extrapolated and tree-level corrected values of correlators to compute the

step scaling function.
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Step scaling in X-space: running of the quark mass Krzysztof Cichy

β a [fm] L/a T/a κ nr of confs step

9.50 0.00235(10) 64 128 0.137032 200 40

32 128 200 40

9.00 0.00314(13) 48 96 0.138060 200 40

24 96 200 40

8.62 0.00470(20) 64 128 0.138976 200 40

32 128 200 40

16 64 200 40

8.24 0.00627(26) 48 96 0.140016 200 40

24 96 200 40

7.90 0.00941(39) 64 128 0.141173 200 40

32 128 200 40

16 64 200 40

8 32 1000 40

7.56 0.01254(52) 48 96 0.142512 200 40

24 96 200 40

7.18 0.01881(78) 32 128 0.144324 200 40

16 64 200 40

8 32 1000 40

6.61 0.03763(157) 16 64 0.148162 200 40

8 32 1000 40

Table 2: Summary of ensembles used for step scaling: inverse bare coupling β , lattice spacing in fm (with

its uncertainty), lattice size, critical κ , number of generated configurations, number of heatbath updates

between saved configurations.

5. Extrapolate to the continuum, using the fitting ansatz

ΣΓ(µ ,2µ ,a)corrected = ΣΓ(µ ,2µ)cont + c1a2, (4.1)

ΣΓ(µ ,2µ ,a)non−corrected = ΣΓ(µ ,2µ)cont + c2a2, (4.2)

i.e. a combined fit linear in a2, using only three finest lattice spacings, in total six data points

and three fitting parameters, ΣΓ(µ ,2µ)cont, c1 and c2. To estimate the systematic uncertainty

from the fitting ansatz, we also extend this fit to a quadratic one in a2 and incorporate the

coarsest lattice spacings of each step. In certain cases, when the cut-off effects in the non-

corrected step scaling function are too large, we only consider the corrected one.

6. Convert from the X-space to the MS renormalization scheme.

7. Calculate systematic uncertainties from non-ideal matching and the uncertainties of Λ
(0)

MS
=

238(19) MeV [5] and r0 = 0.48(2) MeV. The former are accessed from numerical estimates

of the derivative of the step scaling function with respect to β and the latter from explicit

computations at Λ
(0)

MS
= 219 and 257 MeV or r0 = 0.46 or 0.5 fm.

We note that we also investigated finite volume effects, concluding that they are negligible (well

beyond statistical errors) for our choice of x/a values that always satisfy the condition x/L = 1/8.

The only counterexample is when we consider the pair of volumes 8/16 and therefore, we only use

the data from it for an estimate of systematics (the preferred fit only uses 3 finest lattice spacings).
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Step scaling in X-space: running of the quark mass Krzysztof Cichy

µ 2µ point ΣMS
P (µ,2µ) ΣMS

S (µ,2µ)

[GeV] [GeV] type lattice lattice

1.478 2.956 IV 1.0995(104)(66)(33)(13)(37) 1.1134(121)(56)(37)(13)(37)

1.706 3.413 III 1.1027(91)(19)(36)(10)(29) 1.1210(115)(6)(41)(11)(29)

2.090 4.180 II 1.1012(101)(33)(49)(8)(23) 1.1337(140)(13)(52)(8)(23)

2.956 5.911 IV 1.0787(81)(31)(21)(4)(16) 1.0856(90)(27)(21)(5)(16)

3.413 6.826 III 1.0743(72)(18)(19)(4)(14) 1.0846(90)(14)(18)(4)(14)

4.180 8.360 II 1.0691(78)(22)(23)(3)(12) 1.0961(109)(1)(22)(3)(12)

5.911 11.822 IV 1.0721(57)(22)(3)(2)(9) 1.0728(71)(30)(3)(2)(9)

6.826 13.651 III 1.0736(57)(35)(4)(2)(9) 1.0802(73)(8)(5)(2)(9)

8.360 16.719 II 1.0571(65)(24)(5)(2)(8) 1.0755(91)(1)(7)(1)(8)

Table 3: Step scaling function ΣP/S(µ ,2µ), from PP/SS correlators. We show the scale change, the type

of points used and our continuum-extrapolated result translated to the MS scheme. The uncertainties are:

statistical, from the fitting ansatz, from matching, from Λ
(0)

MS
and from r0.

µ 2µ point ΣMS
V (µ,2µ) ΣMS

A (µ,2µ)

[GeV] [GeV] type lattice lattice

1.478 2.956 IV 0.9918(103)(1)(15)(2)(1) 0.9931(86)(30)(9)(2)(1)

1.706 3.413 III 0.9968(108)(6)(22)(2)(1) 0.9987(87)(20)(16)(2)(1)

2.090 4.180 II 1.0127(99)(15)(24)(1)(1) 0.9683(69)(61)(23)(1)(1)

2.956 5.911 IV 1.0061(87)(10)(6)(1)(1) 1.0039(70)(12)(6)(1)(1)

3.413 6.826 III 1.0122(92)(2)(10)(1)(0) 1.0092(74)(19)(8)(1)(0)

4.180 8.360 II 1.0273(85)(22)(12)(1)(0) 0.9848(59)(60)(8)(1)(0)

5.911 11.822 IV 1.0017(69)(12)(0)(1)(0) 1.0009(58)(6)(2)(1)(0)

6.826 13.651 III 1.0103(77)(12)(2)(1)(0) 1.0085(63)(27)(3)(1)(0)

8.360 16.719 II 1.0125(73)(14)(8)(1)(0) 0.9823(52)(53)(1)(1)(0)

Table 4: Step scaling function ΣV/A(µ ,2µ), from AA/VV correlators. We show the scale change, the type

of points used and our continuum-extrapolated result translated to the MS scheme. The uncertainties are:

statistical, from the fitting ansatz, from matching, from Λ
(0)

MS
and from r0.

5. Results and discussion

The results of the step scaling procedure outlined in the previous section are given in Tab. 3

for the pseudoscalar (PP) / scalar (SS) correlators and in Tab. 4 for the vector (VV) / axial vector

(AA) ones, together with the decomposition of all the uncertainties. This decomposition shows

that the most important source of uncertainty is the statistical one, with typically the one from the

fitting ansatz or from the matching as the second most important one. The comparison with 4-loop

N f = 0 continuum perturbation theory [17, 18], or the exact value of 1 for the VV/AA case, is given

in Tab. 5. In most cases, the agreement between our lattice results extrapolated to the continuum

limit and PT is satisfactory. However, we observe some regularities depending on the type of points

that we consider, e.g. for the SS case, points of type II(IV) tend to lie above(below) the PT result

and points of type III tend to agree best with PT. This suggests systematically different cut-off

effects for these kinds of points, which indicates that the X-space approach could be improved by

better understanding of hypercubic artefacts.

The full running of the step scaling function is shown in Fig. 1 for the PP/SS case and in

Fig. 2 for VV/AA. The running obtained from the SS correlator is well reproduced, particularly

for points of type IV/III. Points of type II are approx. 1-σ above the continuum curve. In the

PP running, we observe a possible tendency that the step scaling function is below its continuum

4
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Step scaling in X-space: running of the quark mass Krzysztof Cichy

µ 2µ ΣMS
P/S

(µ,2µ) ΣMS
P (µ,2µ) ΣMS

S (µ,2µ) ΣMS
V/A

(µ,2µ) ΣMS
V (µ,2µ) ΣMS

A (µ,2µ)

[GeV] [GeV] 4-loop PT lattice lattice exact lattice lattice

1.478 2.956 1.1318(68) 1.0995(133) 1.1134(144) 1.0 0.9918(104) 0.9931(92)

1.706 3.413 1.1206(56) 1.1027(104) 1.1210(126) 1.0 0.9968(110) 0.9987(91)

2.090 4.180 1.1080(44) 1.1012(120) 1.1337(152) 1.0 1.0127(103) 0.9683(95)

2.956 5.911 1.0919(31) 1.0787(91) 1.0856(98) 1.0 1.0061(88) 1.0039(71)

3.413 6.826 1.0866(27) 1.0743(78) 1.0846(94) 1.0 1.0122(93) 1.0092(77)

4.180 8.360 1.0802(23) 1.0691(85) 1.0961(112) 1.0 1.0273(89) 0.9848(85)

5.911 11.822 1.0713(18) 1.0721(62) 1.0728(78) 1.0 1.0017(70) 1.0009(58)

6.826 13.651 1.0682(16) 1.0736(68) 1.0802(74) 1.0 1.0103(78) 1.0085(69)

8.360 16.719 1.0643(15) 1.0571(70) 1.0755(92) 1.0 1.0125(75) 0.9823(74)

Table 5: Comparison of lattice results for the step scaling function ΣP/S/V/A(µ ,2µ), with continuum 4-loop

perturbation theory or the exact value of 1 for VV/AA. The errors of the lattice result were combined in

quadrature.
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Figure 1: Running of step scaling function in the PP/SS case (running of the quark mass). The black symbols

correspond to continuum perturbation theory (with an uncertainty related to the uncertainty of Λ
(0)

MS
). The

reference scale is µref = 16.719 GeV. The three rightmost points are the starting points for our step scaling

procedure and hence have no errors. To the left of these, there are three groups of three points, corresponding

to the three step scaling steps and the three types of points. The rightmost point of each group corresponds

to points of type II, the middle one to type III and the leftmost to type IV.

value. This happens for all types of points, but the result is always within 1-σ of the continuum

result even in the last step. Although this can only be a statistical fluctuation, this observation

should be investigated further. The computation of “running” for the VV/AA case serves as a

cross-check of the method, since the continuum value of 1 is known exactly. Again, we observe

good agreement with this result for points of type III and IV. However, for type II, deviations from

1 are increasing when decreasing the energy scale, with a final 2-2.5-σ discrepancy in the last step,

above (below) 1 for VV (AA). This systematic effect strenghtens the conclusion that hypercubic

artefacts should be understood more. This can be done using techniques similar to those of Ref. [19]

(fitting of hypercubic artefacts) or by computing the leading order corrections of O(a2g2) in lattice

perturbation theory.

In conclusion, we investigated, for the first time, the step scaling technique using the coordi-

nate space renormalization scheme. We performed a feasibility study in the quenched approxima-
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Figure 2: Running of step scaling function in the VV/AA case. The black solid line is the exact result of

1.0. The reference scale is µref = 16.719 GeV. The three rightmost points are the starting points for our

step scaling procedure and hence have no errors. To the left of these, there are three groups of three points,

corresponding to the three steps of step scaling and to the three types of points. The rightmost point of each

group corresponds to points of type II, the middle one to type III and the leftmost to type IV.

tion, thus reducing the computational cost to a tractable level. Carrying out three steps of the step

scaling, we evaluated the running of the renormalization constants of the pseudoscalar and scalar

densities, as well as of the vector and axial vector currents, finding rather good agreement with

continuum perturbation theory. In this way, we demonstrated that the X-space method can pro-

vide reliable results. However, we also conclude that better understanding of hypercubic artefacts

will be very important for futher advancement of the method, in particular for its reliable use with

dynamical fermions.
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