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We present our preliminary results for the computation of the non-perturbative running of renor-
malized quark masses in N f = 3 QCD, between the electroweak and hadronic scales, using stan-
dard finite-size scaling techniques. The computation is carried out to very high precision, using
massless O(a) improved Wilson quarks. Following the strategy adopted by the ALPHA Collabo-
ration for the running coupling, different schemes are used above and below a scale µ0 ∼ mb,
which differ by using either the Schrödinger Functional or Gradient Flow renormalized cou-
pling. We discuss our results for the running in both regions, and the procedure to match the
two schemes.
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Figure 1: The plots show the SSFs in both SF and GF coupling regions with respectively blue and red
points (the two most hadronic points have not been used in the current analysis). The error bands coming
from fitting σP and τ are laying on top of each others showing a remarkable agreement between the two
fitting procedures. The comparison with the LO and NLO is also provided (the latter is known only in the
SF coupling region).

1. Introduction

The high precision computation of quark masses requires to control the Renormalization Group
(RG) running very accurately and in a large range of scales. The equations describing the RG
flow in a mass-independent scheme for the renormalized coupling ḡ(µ) and the renormalized mass
m̄(µ) respectively read

µ
∂

∂ µ
ḡ(µ) = β (ḡ(µ)), (1.1)

µ
∂

∂ µ
m̄(µ) = τ(ḡ(µ))m̄(µ). (1.2)

They admit perturbative expansion

β (g)
g→0∼ −g3(b0 +b1g2 +b2g4 +O(g6)), (1.3)

τ(g)
g→0∼ −g2(d0 +d1g2 +d2g4 +O(g6)), (1.4)

with universal coefficients b0, b1, d0, while all the others are scheme-dependent. We can also
define through formal solution of (1.1), (1.2) the renormalization group invariants (RGI) for both
coupling and mass (the latter is valid for any multiplicatively renormalizable composite operator
[1]) respectively as

Λ = µ
[
b0ḡ2(µ)

]−b1/(2b2
0) e−1/(2b0ḡ2(µ)) exp

{
−
∫ ḡ(µ)

0
dg
[

1
β (g)

+
1

b0g3 −
b1

b2
0g

]}
, (1.5)

M =
[
2b0ḡ2(µ)

]−d0/(2b0) exp
{
−
∫ ḡ(µ)

0
dg
[

τ(g)
β (g)

− d0

b0g

]}
m̄(µ). (1.6)

In order to compute the running over several orders of magnitude we use a recursive procedure
in finite volume with Schrödinger Functional (SF) [2] boundary conditions and massless, non-
perturbatively O(a)−improved Wilson fermions. Following the standard SF approach we identify

1
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Figure 2: Continuum extrapolations of ΣP(u) for the three values of uSF reported in Tab 1. Blue (red) points
are raw (1-loop improved [3]) SSFs. The limit a→ 0 is approached quadratically in a/L according to [4].

the scale as the inverse box size µ = 1/L and through a recursive fine-size scaling L→ sL in the
continuum it is possible to compute the running from large volume simulations (L ∼ 1/ΛQCD) up
to the high energy regions (L∼ 1/MW ) where perturbation theory is well defined and can be safely
applied.

2. Step Scaling Functions and SF Renormalization Conditions

In our computation the renormalization group functions are accessed through the Step Scaling
Functions (SSFs) σ and σP defining the scale evolution of a factor s > 1 for the coupling and the
quark mass respectively as

− ln(s) =
∫ √ḡ2(µ/s)
√

ḡ2(µ)

dg
β (g)

with σ(s, ḡ2(µ)) = ḡ2(µ/s) (2.1)

σP(s, ḡ2(µ)) =
m̄(µ)

m̄(µ/s)
= exp

{
−
∫ √ḡ2(µ/s)
√

ḡ2(µ)

τ(g)
β (g)

dg

}
(2.2)

In order to compute (2.2) on the lattice, we identify the renormalization pattern for the quark masses
through the (non-singlet) axial Ward identity

∂µ(AR)
i j
µ = (m̄i + m̄ j)P

i j
R for i 6= j. (2.3)

The renormalized currents are given by

(AR)
i j
µ (x) = ZAψ̄i(x)γµγ5ψ j(x), (PR)

i j
µ (x) = ZPψ̄i(x)γ5ψ j(x), (2.4)

where i, j are flavour indices. Being ZA finite, all the scale dependence of the mass is given by the
inverse of the pseudoscalar renormalization constant ZP ∝ 1/Zm. The renormalization constant ZP

is computed from standard boundary-to-bulk and boundary-to-boundary correlation functions in
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the SF [11] by the renormalization condition

ZP(g0,L/a)
fP(L/2)√

3 f1

∣∣∣∣θ
mq=0

= c3(θ ,a/L), θ = 0.5, (2.5)

where c3 is the tree-level normalisation and θ is entering in the definition of the boundaries quark
fields. In particular the correlation functions in Eq.(2.5) are computed with vanishing background
gauge field and quark masses and read

fP(x0) =−
1
3

∫
d3yd3 z〈ψ̄(x)γ5

1
2

τ
a
ψ(x)ζ̄ (y)γ5

1
2

τ
a
ζ (z)〉, (2.6)

f1 =−
1

3L6

∫
d3ud3vd3yd3z〈ζ̄ ′(u)γ5

1
2

τ
a
ζ
′(v)ζ̄ (y)γ5

1
2

τ
a
ζ (z)〉 (2.7)

using the same notation as in [4]. The discrete version of (2.2) for s = 2 is then given bya

ΣP(u,g0,L/a) =
ZP(g0,2L/a)
ZP(g0,L/a)

∣∣∣∣
u=ḡ2(L)

(2.8)

from which the continuum limit σP(u) = lima→0 ΣP(u,g0,L/a) can be extrapolated (the results for
ZP and ΣP are listed in Tab.1). It has been observed in [6, 7] that the computational cost of measur-
ing the SF coupling grows fast at low energies and in particular towards the continuum limit, thus
it is challenging to reach the low energy domain characteristic for hadronic physics, especially if
one aims at maintaining an high precision. The Gradient Flow (GF) coupling seems to be better
suited for this task [8, 9, 10]. The relative precision of the coupling in this scheme is typically high
and shows a weak dependence on both the energy scale and the cutoff. Following the same strategy
employed by the ALPHA Collaboration for the computation of the running of the strong coupling
[7, 10], we identify two energy regions L > L0 and L < L0, where the "switching scale" between
the two schemes L0 ∼ 1/mb is defined by ḡ2

SF(L0) = 2.012 and ḡ2
GF(2L0) = 2.6723(64). Note that,

as part of the renormalization condition for the mass, the value of the renormalized coupling is
specified. Therefore, using a different renormalized coupling (e.g. GF or SF) results in a different
renormalization scheme for the mass [3]. In the current project we have performed a NP com-
putation of the SSF for uSF = [1.1100,1.1844,1.2565,1.3627,1.4808,1.6173,1.7943,2.0120] and
uGF = [2.1257,2.3900,2.7359, 3.2029,3.8643,4.4901,5.3010]. In order to compute the contin-
uum extrapolation for the SSF in both regions we computed the steps L/a→ 2L/a = [6→ 12,8→
16,12→ 24] for the SF couplings and [8→ 16,12→ 24,16→ 32] for the GF couplings1. An exep-
tion is given by uSF = 2.012 where we added the extra step 16→ 32 (as in Fig.2) in order to have a
better control of the continuum limit since this point plays an important rôle in the non-perturbative
scheme matching procedure.

3. Running and Preliminary results

Having the continuum limit of ΣP(u) for various u in both SF and GF regions, to compute the
running, we need to obtain an interpolating function for the SSFs. This can be achieved following

1the step 6→ 12 is affected by large cutoff effects induced by the GF coupling [8, 9] and it is not included in the
continuum extrapolation

3
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2Figure 3: the plot show the comparison among LO and NLO approximation for the mass anomalous dimen-
sion (while the first is valid for any renormalization scheme, the latter is known only in the SF region) and
our non perturbative computation. The label τSF and τGF correspond to two coupling regions.

two (equivalent) strategies: perform a polynomial fit with the ansatz σP(u) = 1+ p̄0u+ p1u2 +

p2u3 +O(u4) with the first coefficient fixed to its perturbative value p̄0 = −d0 log(2), or as an
alternative approach perform a fit directly for the numerator τ(g) in (2.2) (see Fig.3) viz,

σP(s, ḡ2(µ)) = 1+ p̄0u+ p1u2 + p2u3 +O(u4) = exp

{
−
∫ √ḡ2(µ/s)
√

ḡ2(µ)

τNP(g′)
β NP(g′)

dg′
}

(3.1)

where the anomalous dimension is fitted as a polynomial

τ
NP(g) =

{
−g2(d̄0 + d̄1g2 +d2g4 +d3g6 +O(u8)) g∈ SF region,

−g2(d0 +d1g2 +d2g4 +d3g6 +O(u8)) g∈ GF region,
(3.2)

with coefficients d̄i fixed to their PT values. The fitted expression of β NP in both SF and GF
regions [7, 10] is a fundamental input that let us to isolate the anomalous dimension from the ratio
in Eq.(2.2). As displayed in Fig. 1 both approaches discussed above completely agrees within
errors. The running from an hadronic scale identified by Lhad ∼ 200MeV can be written as

M
m̄(Lhad)

=
M

m̄(Lpt)

∣∣∣∣
SF

m̄(Lpt)

m̄(L0)

∣∣∣∣
SF

m̄(L0)

m̄(2L0)

∣∣∣∣
SF

m̄(2L0)

m̄(Lhad)

∣∣∣∣
GF

. (3.3)

The computation of (3.3) can be split in the following factors: the first term on the rhs is the
PT matching, computed at NLO in the SF region with Lpt = L0/2N ∼ 65GeV, the second is the
standard iterative procedure carried out with the polynomial interpolation of σP(u) for N = 4 steps
(thus gaining a factor 16 in the scale) given by

m̄(Lpt)

m̄(L0)

∣∣∣∣
SF

=
N

∏
i=1

σP(ui) with σ(ui+1) = ui = ḡ2(2−iL0), (3.4)

the third factor (that could be included in the iteration above) represents the NP scheme matching
since is connecting the two coupling regions

m̄(L0)

m̄(2L0)

∣∣∣∣
SF

= σP(u0) with u0 = ḡ2(L0) = 2.012. (3.5)
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uSF L/a β κ ZP(g2
0,L/a) ZP(g2

0,2L/a) ΣP(g2
0,L/a)

6 8.5403 0.13233610 0.80494(22) 0.76879(24) 0.95510(40)
1.11000 8 8.7325 0.13213380 0.79640(22) 0.76163(34) 0.95635(50)

12 8.9950 0.13186210 0.78473(29) 0.75167(59) 0.95786(83)

6 7.2618 0.13393370 0.75460(27) 0.70808(31) 0.93835(53)
1.4808 8 7.4424 0.13367450 0.74425(26) 0.70004(33) 0.94060(55)

12 7.7299 0.13326353 0.73515(33) 0.69193(42) 0.94121(72)

6 6.2735 0.13557130 0.69013(32) 0.62979(37) 0.91256(68)
2.0120 8 6.4680 0.13523620 0.68107(28) 0.62341(43) 0.91535(74)

12 6.72995 0.13475973 0.67113(43) 0.61452(49) 0.91564(93)
16 6.93460 0.13441209 0.66627(31) 0.60924(66) 0.91440(108)

uGF L/a β κ ZP(g2
0,L/a) ZP(g2

0,2L/a) ΣP(g2
0,L/a)

8 5.3715 0.13362120 0.73275(27) 0.67666(64) 0.9234(9)
2.1257 12 5.5431 0.13331407 0.71301(32) 0.65750(89) 0.9221(13)

16 5.7000 0.13304840 0.70248(32) 0.64369(86) 0.9163(13)

8 4.4576 0.13560675 0.64779(33) 0.56891(75) 0.8782(12)
3.2029 12 4.6347 0.13519986 0.62622(42) 0.54749(94) 0.8743(16)

16 4.8000 0.13482139 0.61735(46) 0.53819(110) 0.8718(19)

8 3.7549 0.13701929 0.52174(47) 0.39243(285) 0.7522(55)
5.3010 12 3.9368 0.13679805 0.50366(53) 0.36522(209) 0.7251(42)

16 4.1000 0.13647301 0.49847(73) 0.36088(232) 0.7240(48)

Table 1: Example of results for ZP, ΣP in both SF and GF region.

The last term is then the ratio of the runnings from an hadronic scale to the scheme-switching scale.
In order to have more flexibility in choosing Lhad we take advantage of the non-perturbative RG
functions and directly determine

m̄(2L0)

m̄(Lhad)

∣∣∣∣
GF

= exp
{
−
∫ g(Lhad)

g(2L0)
dg

τNP
GF (g)

β NP
GF (g)

}
. (3.6)

Note that here we are computing an integral whose limits are the two scales we want to connect
by RG evolution, they do not have to be any more related by an integer scaling factor s, as it
is being applied in the SSF recursion. In the present work, identifying the hadronic scale with
the one corresponding to the most hadronic point2 covered by the SSF uGF = 5.3010 we have
Lhad/L0 = 18.74(26) and then the total range of scales covered by the running involving the two
schemes is Lhad/Lpt = 300(4) and finally the running factor M/m̄(Lhad) = 0.9088(78).

4. Conclusions

We have computed the NP running quark mass for N f = 3 between ∼ 200MeV and ∼ 60GeV
with an unprecedented sub-percent uncertainty. In order to optimise the precision (in particularly
at the hadronic scales) we employed two different schemes, providing a strategy for a NP matching
between them at the intermediate scale of∼ 4GeV. Another completely new results is given by the
computation of the NP mass anomalous dimension for both SF and GF coupling regions allowing
for a more flexible choice of the hadronic matching scale.

2note that this is not the definitive value defining Lhad .
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