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EFT for pions and a dilatonic meson Yigal Shamir

1. Introduction

Asymptotically free gauge theories with relatively few fermion degreesaddom exist in
a chirally broken and confining phase, associated with a coupling thasdovard the infrared.
Increasing the number of fermion degrees of freedom can bring thengiiof the coupling to a
halt. An infrared-attractive fixed point (IRFP) appedss [1] and thethexists in an infrared-
conformal phase. The smallest number of flavors where the theory admiigF® is generally
referred to as the “sill” of the so-called conformal window.

With a number of flavors slightly below the sill, the theory is still chirally broked eonfining.
But it is different from QCD in being nearly conformal. More preciselg teta function is very
small near the energy scale where chiral symmetry breaking sets in. Weatdiie theory has a
“walking,” rather than “running,” coupling.

Lattice simulations of walking theories have revealed the presence of a-flimgbet scalar
meson that can be as light as the pions over a wide fermion-mass rangeréfcent review, see
Ref. [2]). Notable examples include ti82J(3) gauge theory wittNs = 8 Dirac fermions in the
fundamental representatid [3, 4] or with two flavors of sextet fermiBhsWe stress that, when
dealing with a theory with a very small beta function, deciding whether theytheohirally broken
and confining, or, alternatively, infrared conformal, can be veryiehging. Here we will assume
that the models mentioned above are indeed chirally broken in the continuum limit.

Walking theories have features which are attractive for extensions &térelard Model that
involve a new strong interaction. The renormalized coupling is changing stewly with en-
ergy scale even when its value is rather large. As a result, one sometime$afigel anomalous
dimensions, which, in turn, can lead to a very large enhancement of thesponding operator.
This feature is desired when trying to reconcile flavor physics with expetiiffier reviews, see
Refs. [6,[F.[B]). Having a very light scalar is an added benefit, s;awithin the context of
technicolor-like theories, it is a natural candidate for the Higgs patrticle.

Walking theories are also theoretically interesting. In particular, it is natoiask if the pres-
ence of the light singlet scalar meson is somehow connected to the smalltiessefa function.
Indeed, the running of the coupling reflects the breaking of classiad swvariance by the quan-
tum theory. When the beta function is small, the quantum breaking of dilatatmmsyry is in
some sense also small. Here we will discuss the construction of a low-egféegtive action for
the pions together with the light singlet scalar megbn [9]. A consistent l@rggmlescription must
account for all the light states, and must incorporate the scalar mesoh ednide as light as the
pions. More generally, even if the pions will eventually become lighter thasdakar meson in the
chiral limit, such an effective description is appropriate whenever tHarsweeson is much lighter
than all other states in the theory. The main challenge facing the constructtuat,isn order to
build a systematic low-energy expansion, one has to quantify the violatiatigtstion symmetry
in the effective theory, and to be able to relate them to the microscopic thesucima way that
these violations are controlled by a small parameter. The light scalar, otdlditameson,” then
becomes a pseudo Nambu-Goldstone boson of the approximate dilatation symmetr



EFT for pions and a dilatonic meson Yigal Shamir

2. Building an effective field theory

We start by reviewing the ingredients of standard chiral perturbatiomyt{éar a review, see
Ref. [10]). The massless microscopic theory has chiral symmetry, wspmetaneous breaking
gives rise to Nambu-Goldstone bosons, the pions. When the fermions/aneagnon-zero mass,
the pions become massive, too, but they remain the lightest asymptotic stateg as tbe fermion
mass is small enough.

Let us assume that we hatdg Dirac fermions in the fundamental representation. This is a
complex representation (whéi > 3), and the symmetry breaking pattersld(Ns ). x SU(N¢)r —
SU(N¢)v, whereSU(N¢ )y is the diagonal subgroup. The lagrangian of the microscopic theory is

1
LMC(X) = ZF2+UDY + Trx "+ TLX YR (2.1)

Herex is anN¢ x N¢ matrix-valued spurion,e., an external source field. As usugr| = %(11
o) and P = %EU(lq: ¥5). Under a chiral rotation, the (dynamical) fermion fields and the
(external) spurion field transform according to

Wr— ORYLR, Yr— UJL,RQLR, X — OLXOR, (2.2)

whereg r € SU(N¢)Lr. The lagrangianZMI€ () is invariant when we apply the chiral transfor-
mation to all the fields including the spurion field. The lagrangian is also chiralgriemt when
we turn off the external source by settiggx) = 0, and.Z’M!°(0) is recognized as the lagrangian of
the massless theory. But we can also choose to set the chiral sourceemsn-zero “expectation
value,”x (x) = m. Now.ZM!€(m) is no longer chirally invariant, and instead, under an infinitesimal
chiral transformation we hav@#M'® (m) = mé (@), which exhibits the explicit (soft) breaking
of chiral symmetry by the fermion mass term. We see the dual role of the chireba. On the
one hand, it encodes the explicit breaking of chiral symmetry coming frermidiss term. On the
other hand, it does so in a manner that assigns certain chiral transfanmpeagjoerties to the mass
matrix itself, thereby rendering the lagrangian of th@ssiveheory formally invariant. These same
transformation properties will next be used to constrain the structure chiha lagrangian.

At the leading order, the lagrangian of the low-energy effective thsory

zEFT—LZtr(a sto Z)sztr< ts o5t ) (2.3)
=72 us Oy 5 X X)- :

It depends on two low-energy constants (LECE)andB. The dynamical effective field takes
values in the coseé3U(Ns ). x SU(N¢)r/SU(N¢ )y, which is isomorphic t&SU(Ns ). The effective
field Zjj is loosely identified with the fermion biIinear(wLJwR’j), and inherits its transformation
properties,

S —gLZgh. (2.4)

It is easy to check that the chiral lagrangifin](2.3) is invariant undermimbined transformation of
Egs. (Z.) and[(Z]4). Setting(x) = m> 0, it becomes

LEFT = —£2BmN +tr ((dum)? + 2mBr?) +O(1t%) (2.5)
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where we have expanded the non-linear fig(d) = exp(2ir(x)/f) around its classical vacuum
(Z) = 1. We see that at tree level, the pion mass is givemBy= 2mB. The other LECf, is
the pion decay constant in the chiral limit (up to normalization conventions)amde seen by
coupling the effective theory to an external axial gauge field.

Why does the leading-order chiral lagrangi@n](2.3) contain just two terfits® chiral la-
grangian provides a systematic expansion in the external momenta and imntihenfenass. De-
noting byd the small expansion parameter, the power counting is

p2/N2 ~ m/\ ~ 3. (2.6)

Here p? stands for the inner product of any two external momenta. The refesaate is usually
taken to be\ = 4rtf. While being a dynamical, infrared scale of the microscopic thebmyay
be identified with the ultraviolet cutoff of the chiral lagrangian. This worksduse the mass of
the pions, which sets the energy scale probed by the effective lagnateyias to zero in the chiral
limit. At the leading order, we allow for terms of ord&t, and, after imposing the invariance under
chiral symmetry, this leaves us with just the two operators we have if Ep. (2.3)

We have seen how the spurigncommunicates information about the explicit breaking of
chiral symmetry between the microscopic and the effective theories. Maorerglly, by taking
derivatives with respect tg(x) and xT(x) one defines a set of correlation functions that can be
computed in both theories and compared. The LECs of the effective tlagerfixed order by
order in the chiral expansiofi (.6) by requiring that the effective theeproduce the correlation
functions of the microscopic theory.

We now turn our attention to scale transformations, which act on both thdinates and the
fields. Given some fiel@®(x), its variation under an infinitesimal dilatation is

wheres is the scaling dimension @b. In a theory containing gauge and fermion fields (but no
elementary scalar fields) the dilatation current is given by

Sy=XTu, (2.8)

where Ty, is the energy-momentum tensor. Classically, the lagrangian of the massless the
transforms into a total derivative under an infinitesimal dilatation, and the tidataurrent is
conserved. Quantum mechanically, the dilatation current is not consedveshell, its divergence

is equal to the trace of the energy-momentum terjs¢r [11]

whereT = Tg + Tan, and
_ _ B(&) o
Ta(m) =mgy . Tan(m) = = 57 2 ympy (2.10)

All quantities occurring on the right-hand side are the renormalized ¢eg3) is the familiar beta
function, whileym = ym(g?) is the mass anomalous dimensidp.is the classical divergence of the
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dilatation current, which vanishes if the fermion mass ddgsquantifies the quantum breaking of
scale symmetry, reflected primarily in the running of the coupling.

Following the example of chiral perturbation theory, our first task is to ftgrmacover di-
latation invariance of the microscopic theory. To this end we introduce a pevios field o(x),
which we will call the dilaton. Unlike the homogeneous transformation fulg (th&)infinitesimal
variation of the dilaton field is

00 =Xu0,0+1. (2.11)

The inhomogeneous term will play a crucial role below. The renormaliziedldource transforms
like an ordinary field, with the same anomalous dimension as the renormalized mass

OX =XuOuX +(1+ym)X - (2.12)
The lagrangian of the microscopic theory becomes
LMC(a,x) = LMC(X) + 0Tan(X) +O(0?) (2.13)

where Tan(x) is obtained by the replacement— x(x) in Eq. (2.10). The classical variation
of the lagrangian is absent thanks to the scale transformation propertiles ohiral sourcey.
Disregarding total derivatives, the variation®™!® (x) is thus—Tan()), which in turn is cancelled
by the inhomogeneous term in Eq. (3.11) when we \@fy,(X). In order to cancel the terms
proportional too (as well as to higher powers @f) in the variation of M (g, x), we would
need theO(g?) terms on the right-hand side of Ed. (3.13). We will not attempt to derive these
higher order terms, because they do not play any role in the following.

In the case of the chiral lagrangian, we have seen that settixjg= 0 reproduces the massless
theory, and, hence, exact chiral symmetry. The same is not true fla spmmetry. Setting
X (x) = o(x) =0, the quantum variation of the massless theory beconigs 0), namely, the trace
anomaly is(3(g?)/(4g%))F2. The massless quantum theory is not scale invariant, because the
coupling runs.

Moving on to the effective theory, we introduce a new effective fieldterdilatonic meson,
denotedr (x). Its transformation rule is similar to that of the external dilaton source,

and again contains an inhomogeneous piece. Batind T are inert under chiral transformations.
As for the non-linear chiral field, its scaling dimension must be zero because it is unitary, and its
variation under an infinitesimal dilatation is thus

The next step is to construct the leading-order effective lagrangianaré/to write down all
possible operators that depend on the effective fieldand r, and on the source fieldg, and
o, which are invariant under chiral and scale transformations. As aafitestinpt, we follow the
same power counting as for the chiral lagrangian, we allow for all terms which are of ordér
according to Eq.[(2]6). The resulting leading-order lagrangian is
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where
L= f4’2’V,T(T— o) tr(d,2"9,%) , (2.17)
Zy = fzfzvr(r—a) 7 (9u1)?, (2.18)
L= — f’ZTZB"VM(T—a)eVTtr (sz+sz) , (2.19)
Zy = 2B Vy(T—0) €™ . (2.20)

Z and.Z; are the kinetic terms for pions and for the dilatonic meson, respecti\ély. is a
generalized chiral mass term, wheredsaccounts for the self-interactions of the dilatonic meson.
The presence of a separate sef @indB parameters for the pions and for the dilatonic meson is to
be expected. As we discuss below, the expogémEq. (2.1P) compensates for the dependence of
the transformation rule of the renormalized chiral source on the mass anaaitoension.

The trouble with this new effective lagrangian is the occurrence of thepaksV,;, V;, iy and
Vy, each of which is an arbitrary function of its argument. The reason wisgtpetentials are there
is that the inhomogeneous terms in the variations ahdt cancel out in the difference— 0. As a
result, any functioV (1 — o) transforms homogeneously and has a scaling dimension equal to zero,
much like the non-linear field. But unlike thez-dependent terms, whose structure is constrained
algebraically both by the unitarity &f and by the non-abelian nature of chiral symmetry, the
abeliandilatation symmetry places no algebraic constraints on the form &f the- ) potentials.

At this point, our effort seems to have reached a dead end. The feemtf@s occurring in
the leading-order lagrangian can be Taylor expanded, and the éxpaogfficients amount to an
infinite set of parameters. If all of them would remain in the leading-ordeatagan, then we will
have lost any predictive power.

To remedy this, we will reexamine the dynamics, seeking a way to extend tted phiver
counting [2.p) to a more powerful one that will impose a power-countingftby on the Taylor
coefficients of these potentials.

3. A crude model

In this section we consider a crude model for the dynamicSW({N.) gauge theories with
N fermions in the fundamental representation. As an approximation for thdumatiion we will
consider the familiar two-loop expressidh [1],

092 _ by 4 b,
dlogu 1629 (16172)

9P (3.1)

In Fig.[d we have plotted the two-loop beta function féy= 3 and various values dfi;. The

N¢ = 2 curve shows how the beta function looks in a QCD-like theory. In this tteseoefficients

b1, by in Eq. (3:1) are both positive, and the running becomes faster with grayifg the number

of flavors Ns increases, we reach a range whbete> 0 > by (for N; = 3 this range is given by
8.05 < Nf < 16.5). Withb; > 0 the theory is still asymptotically free, and the beta function starts
off negative. But as the coupling grows the screening effect of tireiéms takes over. The beta
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Figure 1: Two-loop beta function of th&U(3) gauge theory with varying numbebhé of
fundamental-representation flavors. The dashed vertiwabitg? = 1° ~ 9.87 marks the crit-
ical valueg? of the coupling where, according to the gap equation, cBiyaimetry breaking
takes place in a walking theory.

function turns back and crosses the axis. The crossing geing. defines an IRFP. WheN; is
only slightly above the minimum needed to produce a negativthe value ofy, is very large. But
it decreases monotonically with increasiNg

As an analytic handle on chiral symmetry breaking we will use the gap equatipredicts
that in a walking theory, chiral symmetry breaking sets in when the couplexches the critical
value [¢]

% = 4 _
C 3C2

where the last equality is valid for the fundamental representati®uU@8). Note thatg. does not
depend on the number of flavors.

We are now ready to determine the “phase diagram.” First assumidti@small enough that
either there is no two-loop IRFP, or, if it exist, tratN¢) > gc. As we go down in energy scales,
the couplingg will grow, and chiral symmetry breaking (ultimately accompanied by confinégmen
will set in wheng reaches. If, on the other hand\s is large enough that,.(N;) < gc, the running
will come to a halt at the IRFB,. The renormalized coupling will never reagf and the infrared
physics will be conformal.

Our crude dynamical model predicts that the conformal window occupgasitigeN; < Nf <
(11/2)Nc, where the sill of the conformal window, is the solution of,(N;) = gc. (In general

{ is not an integer. The model suggests tNatis close to 12 folN; = 3, but whether this is
indeed the case is still under investigation.) Moreover, the dynamical mexsdls an interesting
feature of the chirally broken phase. As can be seen from[Fig. 1, MaenN; andN; — Ny is
not too large, the (negative) beta function at the critical coupf&{g?), is roughly proportional to

m, (3.2)
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Nt —Nf. This is the hint that will lead us to the desired power counting.

4. Power counting

According to the model of the previous section, the beta function at thd siimametry break-
ing scale isB(g?2). This is a measure of the explicit breaking of dilatation symmetry felt by the
low-energy sector. Adl; is increased towards the sill of the conformal window, we expect this
explicit breaking to vanish; fals > N¢, the infrared theory has an emergent conformal symmetry.

Loosely speaking, what this means is that the small parameter controllingalstdxreaking
of dilatation symmetry in the low-energy theoryNg — Nf. But there is an obvious problens
takes integer values, and, unlike the fermion mass, we cannofNureé\; continuously, nor can
we actually reach the critical poifts = N; sinceN; is not an integer.

This problem can be solved for fermions in the fundamental represenistiaking a suitable
largeN limit, the Veneziano limit. We assume that the number of fladyrgrows in proportion
with the number of colordl;, while the ratio

ne = N¢/Ne (4.1)

is held fixed. Based on the behavior of the two-loop beta function, wecexpat the limit

, 4.2)

will be finite, where nowmN; (N;) is an integer: the actual smallest number of flavors where the
SU(N¢) theory is infrared conformal. The small parameter we seek for our poowerting isns —

n;. In the Veneziano limitns has effectively become a continuous parameter, and the Veneziano-
limit sill of the conformal window can be reached by letting— n} from below. Of course, we
must not forget that the increments we can makesinannot be parametrically smaller thafi\g.

The complete power counting we need is thus given by (Nith N¢)

p?2/A?> ~ m/A ~ 1/N ~ [nf—nj| ~ &. (4.3)

For any largeN limit, the appropriate coupling is the 't Hooft coupling, which we take to be
@ = g°N¢/(16m). Notice thatB(g?)/(49%) = B(&)/(4a). Our centralhypothesids that at the
dynamical scalé\ where chiral symmetry breaks spontaneously, the beta function beiaves

B(&(A)) = O(ns —n}) + O(L/N) . (4.4)

As a consequencg,(&(A)) vanishes when the Veneziano limit followed by the limit,” n} are
taken.

We need to spend a moment to explain whas. Let us reexamine Eqd. (2]17) afd (2.18).
If we disregard the potentialé; andV; (the justification for doing this will be explained shortly),
the pion decay constant in the chiral limit fg = € f;, wherevy is the expectation value of the
dilatonic meson field in the chiral limit. Similarly, the decay constant of the dilatoniomigself is
ﬂ = e f;. Much like f}, the decay constant of the dilatonic meson is defined by the matrix element
of the dilatation current between the vacuum and a one dilatonic-meson si#tenatively, it
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can be defined from the matrix element of the energy-momentum tensor belfreegame states.
Taking into account the behavior of these matrix elements in the Veneziano limit we

anf,  4nf,
~ N ~ X
Being O(1) in largeN counting,A is the characteristic scale for the masses of the lightest
Goldstonemesons, which, in turn, provides the ultraviolet cutoff of the chiral lagisam
How does the power counting (#.3) constrain the potentials? Let us diffatethe lagrangian
of the microscopic theory, Eq[ (2]13), with respect to the dilaton soafeg, and then set the
sources to zero. We obtain

(4.5)

_ B(a) _
= % F2(x) = O(d), (4.6)

4 MIC
20 (X)

= Tan(X)

o=x=0 x=0
where the last equality follows from our central assumption] (4.4). Monegdly, if we differenti-
ate the partition functio@M!® with respect to ther field n times, and we are careful to do this at
non-coinciding points, the resulting correlation function will be parametriczlyrderd”.

On the effective field theory side, takingderivatives of the lagrangian with respectdo

probes then-th derivative of the potential¥,("). In terms of the Taylor expansion
[e0) Cn
V= 2 —(t—o)" 4.7
& n| (T a) Y ( )

this probeg for k > n. The idea is to match suitable correlation functions of the microscopic and
the effective theory, setting = 0 (and, if desiredy = 0 as well) in the end. It takes a detailed
study to verify that one can constrain all the expansion coefficients qfdtentials this way[]9].
The end result is that the Taylor coefficients are subject to the powstiog hierarchy

Ch=0(8"). (4.8)

The alert reader will have noticed that we must allow for multiplderivatives at the same space-
time point in the effective theory, but we disallow them in the microscopic thdarfact, this is
not a problem, because the effective theory deals with hadrons, widamoa point-like objects;
the effective theory cannot resolve spacetime distances smaller than 1

We use this opportunity to draw the attention of the reader to a subtle poinércomg the
power-counting proof of Ref[[[9]. While we expect the hierardhy]4o8hold for generic (small)
values of all of the expansion parametdrs](4.3), the proof we have givRef. [9] effectively
invokes the Veneziano limit, in that it neglects all th&\Lcorrections in Eq.[(4]4). Some other
places in Ref.[[9] also tacitly neglect/ll corrections, notably Sec. 4.4, where we discuss the
tree-level theory in the limibs " nt.

The final result is that the leading-order lagrangian now consists of w&frorslerd according
to the power counting (4.3), with the expansion coefficients of the potentibject to Eq. [4]8).
This allows us to discardy, V; andVi, because?,, % and.%y are alreadyD(d) without them.
Only in V4 do we need to go to the first non-trivial order in its expansion. After settirg0 and
X = m, the leading order lagrangian reads
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where
fI?[ 27 T
2
= %Tezr(dur)z, (4.11)
frerTT T t
L = —Té’ mtr(Z+2'), (4.12)
Ly = 2B " (co+017) . (4.13)

It remains to discuss the exponerin Eq. (4.1R). Assuming that the transition into the conformal
window is sufficiently smooth foyy,, one can show that we neggd = y;;, in the transformation rule
of the renormalized chiral source, Ef. (2.12), whgfds the IRFP value of the mass anomalous
dimension at the sill of the conformal window. As a result,

y=3-V. (4.14)

Present day numerical evidence suggests tkayf}< 1, and, therefore, 2y < 3.

5. Tree level

In this section we consider the leading-order lagrangian for a givemyttveith fixed N and
Nf. We first discuss the classical vacuum of the dilatonic meson in the chiral limfiollws from
Eq. (4.1B), form = 0 the dilatonic meson’s potential (1) = &*(co+ ¢1T) up to a dimensionful
constant. This potential is bounded from below provided that 0. The unique, global minimum
of U(T)is

Vo=—-1/4—cp/c1 . (5.1)
[Like all LECs, the actual value af; must be determined by matching the effective theory to the
microscopic theory. Note that only products sucleg; or ¢;B; have an invariant meaning, much
like mBy; in the case of the standard chiral lagrangian. We use this freedom tmessu> 0.
Self-consistency of the low-energy description then excludes a negaive forc;.]

Observe that the classical vacuum would become ill-defined;ferO. This has the following
interesting interpretation. The potenti®ét — o) introduced in Sed] 2 originate from the explicit
breaking of scale invariance in the massless microscopic theory. This jsrin@rticular, forcy,
which is theonly LEC in the leading-order lagrangian coming from the expansion of the fiaten
(note that the lagrangiap (#.9) becomes scale invariant if weset; = 0). Thus, the stable clas-
sical vacuum of the effective theory ultimately owes its existence to the rgmriithe coupling in
the microscopic theory. This should not come as a surprise, becausey#ddhum has a preferred
scale (as opposed to a vacuum with no characteristic scale, or a corstimamifold of vacua with
a gradually changing characteristic scale), then the theory cannoekagescale invariance.

The tree-level mass of the dilatonic meson in the chiral limit is

m? = 4¢,e?°B; . (5.2)
If we consider the ratio of the dilatonic meson’s mass and decay corfstant™ f;, we get

N?mé/ {2 = 4c,N%B, /2 | (5.3)
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in which the dependence ag cancels out. [The role of the factor B on both sides is to undo
the largeN dependence of the decay constant of the dilatonic meson, thereby dcebpinatio
finite in the Veneziano limit (compare Eq. (4.5)).] Recall that= O(5) according to Eq.[(4]8). It
follows thatm; ~ 8%/2. This resembles the familiar behavior of the pion mass in ordinary chiral
perturbation theoryn,; ~ m%/2.

We next consider the classical vacuufm) for m> 0. It is implicitly given by

fBrNrym (4-y)v(m)

wherev;(m) = v(m) — vp. Genericallyy;(m) is O(1), because; ~ m~ by the power counting.
One can check that;(m) > 0 for m> 0, and thatv(m) is a monotonically increasing function.
Using Eq. [4.14), the tree-level masses of the dilatonic meson and the pion ar

Mg = 4c1Br ™ (14 (L4 yp)va(m)) (5.5)
2

me, = 2mB et MM — 8;?;;\? My, (m) . (5.6)
m

Both m; andm;; are monotonically increasing witi. Interestingly, the dependence of the tree-
level pion mass on the fermion massvould reduce to that of ordinary chiral perturbation theory,
if vy, happened to be equal to 1, which is the favored value according to thequegion analysis.
For any other value off;,, Eq. (5.6) furnishes us with a prediction of the low-energy theory that
distinguishes it from ordinary chiral perturbation theory.

6. Approaching the sill of the conformal window

In this section we study the tree-level predictions of the effective thesrha sill of the
conformal window is approached. To avoid technical complications, wecaiisider only the
chiral limit, m= 0. Also, as was done in Ref[| [9], we will take the Veneziano limit, thereby
neglecting the IN corrections in Eq.[(4]4).

In the Taylor series for the potentials (4.7), each coefficigretan in itself be expanded as a
power series im¢ — N,

Cn=Y Ew(nr —np~. (6.1)
k=n
The lower limit of the summation comes from the power-counting hierarichly (de@)ember that
n¢ —nj ~ J). In particular, the tree-level potential in E{. (4.13) becomes

Vu(T) =co+ 1T = €oo+ (N — N ) (€o1+ €11T) . (6.2)

Sincens < n; for chirally broken theories, the constramt> 0 translates int@;7 < O.

We may ask what happens if we attempt to apply the low-energy expansiothémiy that
lives inside the conformal window. Assumings > n;, we see that; = (ns — n})¢11 becomes
negative. A a result, the classical potential becomes unbounded flom Béne conclusion is that
the effective theory breaks down inside the conformal window. This i$ stsould be, because

10
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there is no spontaneous breaking of chiral symmetry inside the conformabw. In this sense,
the limitns " n} is qualitatively different, and more singular, than the chiral limit- 0.

Let us next examine the dependence of a few observablas em?. Since we will be com-
paring observables belonging to different theories, we must comparasionéess quantities. The
dependence on¢ —n} may come directly front; = (ns —n})Cy4, Or it can also arise from the
behavior of the classical vacuwg. In fact, we already have one such example, namely, the ratio
Nmy/f; in the chiral limit, given in Eq.[(5]3). In this case there is no dependencg,amd the
dependence ons —n; comes only frone;.

Before moving on, it is convenient to use the freedom to shiftttfield by a constantt —

T+ A, in order to simplify the expression fep. Given thatns — n; is one of the small expansion
parameters, we tak& to be independent afiy —nf so as not to obscure the power counting.
Substituting in Eq.[(6]2) we see that the shift has the effect of charmging: To1 + €114, while
€oo andcy are unchanged. We will use this freedom toggt="0. (The remaining dependence of
the lagrangian[(4.9) on the shiftis absorbed into redefinitions of tHés andB's.) The classical
vacuum of them = 0 theory thus becomes (compare Eq.J(5.1))

Vo = —1/4—Co/(E1a(Ns —Nf)) - (6.3)

We comment in passing that the dependence of the physical decay ¢onbtane f and f; =
e fr, onvg suggests that we should hawg— —oo for ns 7 nf, which in turn requireggy > 0.
Appealing as this may be, however, we have not been able to prove this@ssbasically because
it involves the comparison of dimensionful quantities of different theories.

As our second example we consider the fermion condensate, measureats iuflfn. We find

<T.Ulll> _ Ban e_yr*nvo

o= , 6.4
2 - (6.4)

wherev is now given by Eq.[(6]3), and where we have used that the tree-lendkosate is
(@) = —f7BaN €. (6.5)

Assuming thatgo > 0 (and thaty’, > 0 as well), Eq.[(6]4) predicts an enhancement of the fermion
condensate fans ' nt, which, apart from the familiar dependence on the mass anomalous dimen-
sion, depends also on the LEGg &ndci; through Eq.[(6]3).

The low-energy effective theory provides us with a quantitative desmnipf the (pseudo)
Nambu-Goldstone sector in the chirally broken phase. But it does netgiany access to physics
inside the conformal window, nor to the dynamics of a chirally broken thabany energy scale
which is comparable to or larger thaki We may gain some qualitative understanding of the
transition into the conformal window by using the dynamical model of fec.t8s donsists of
using the two-loop beta function, combined with the prediction of the gap equatidhe critical
coupling that triggers chiral symmetry breaking. Here we add a new elemangly, we will use
this dynamical model in the Veneziano limit, where, in terms of the 't Hooft cogghitroduced
in Sec[}, the critical coupling i8 = 1/6 (for fermions in the fundamental representation).

In the Veneziano limit, one can express the two-loop beta function as

B(d):—(é—d>2<d+2<2:—13&>> , (6.6)

11
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where we wrotell = 1/6 — & = a.— a andns = 4—A. At the chiral symmetry breaking scale
a(N) = ac, which corresponds ta = 0. The beta function then satisfiBéa.) O f. It follows that
the sill of the conformal window is at; = 4, and that the conformal window is<4n¢ < 11/2.
(Forns > 11/2 asymptotic freedom is lost.)

We next introduce a new reference scale dendtgg where the subscriptnt” stands for
“nearly-conformal.” It is defined in the massless theory by the conditian tha

B(&(Anc)) = —¢0o, (6.7)

for some fiducial value & & < 1. Eq. [6.J) is supplemented by the additional instructionMaat
is to be found by starting in the deep infrared, and then increasing thetifidatp (6.7) is satisfied.
[This additional instruction is needed to avoid the second occurren@&of= —¢& in the vicinity
of the gaussian fixed point, as is visible, for example, inNlne= 12 orN¢ = 13 curves in Fig. 1.]

Because it relies on the beta function, the criterfor] (6.7) make sense onlgaliitson/Anc is
large compared to any dynamical infrared scale that may be induced in tistessatheory. The
scale/\c thus always exists for theories inside the conformal window, where nardical infrared
scale is generated. In the chirally broken phase, our dynamical moelicts that/\nc exists
provided thatns is close enough ta, so that at the critical couplingB(dc)| < &. Moreover,
becausgs(&c) tends to zero whens tends tont, it follows that the ratio\/Anc also tends to zero
in this limit.

Let us now distinguish three regions for the fermion mass:

I A<M< Ane, Il m~A, 1l m<A.

Region 1l is where the low-energy expansion is valid. The theory hds &pproximate chiral
symmetry and approximate dilatation symmetry, both of which are spontanesakgnb

In Region |, chiral symmetry and dilatation symmetry are both explicitly brokehé&fermion
mass, but this breaking is soft. Because of the smallness of the beta fundtianwe expect to
see in Region | is the characteristic behavior ofiass-perturbed conformal systefrhis implies
that the masses of all mesons behave like ésgeRef. [12])

M ~ A(M/A) T (6.8)

The transition between the conformal and chirally broken behavior sécuRegion Il. Once
mgoes below\, we enter the chiral regime. The masses of all non-Goldstone mesores &eeat
Mnon-ncB ~ /A, while the masses of the pseudo Nambu-Goldstone mesons behave like

Mﬁmes = [O(ns —n}) +O(M/A)| A2 < N ~ Miayrncs - (6.9)

We see that ags tends ton; from below, the masses afl mesons in the massless theory tend to
zero, if measured in units df,.. But the masses of the pseudo Nambu-Goldstone mesons vanish
faster; the smallness of the ratiyncs/Mnon-nce IS What allows for the existence of a systematic
low-energy description.

Notice that in order to stay in the chiral regime whangets closer to; we must keep de-
creasingn. This is because we must maintami/\ < 1, and/A//Anc vanishes at the conformal sill.
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Itis also useful to consider what happens if we hwolfixed in units ofAn.. Regardless of whether
nt is smaller or larger thant, all theories whergns — n;| < 1 then have a wide region where the
theory exhibits the typical behavior of a mass-perturbed conformalmy3dtke difference between
ns > Nt andng < n; is that in the former case, the mass-perturbed conformal behavior eodists f
anym < Anc, regardless of how smath is. By contrast, fons < n; this behavior exists only in
Region I:A < m <« Ap, which is bounded from below. As; approaches the siti;, the range of
fermion mass where the theory exhibits a mass-perturbed conformalibekesps expanding be-
causeN/Anc gets smaller, until eventually a¢ = n; we have/\ /A — 0, and the chirally broken
behavior is completely lost. The physical picture that emerges is that, if wayaluse\c as the
reference scale, and the fermion mass is kept at some fixed value in ufjig tfien the physical
spectrum will vary continuously as we dia} upwards, across; and into the conformal window.
In this sense, the transition into the conformal window is smooth.
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