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Ultraviolet fixed points provide an important means to define continuum limits of quantum field
theories. In this contribution, we explain how interacting ultraviolet fixed points may arise in
general four-dimensional gauge theories coupled weakly to scalar and fermionic matter fields.
Our results derive from a systematic classification of all high- and low-energy fixed points in
general gauge theories within perturbation theory. It is shown why and how Yukawa interactions
provide a unique mechanism for the generation of perturbative ultraviolet fixed points. Phase
diagrams for simple gauge theories are discussed to illustrate the main results. Some implications
for particle physics beyond the Standard Model are indicated.
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Interacting ultraviolet completions of four-dimensional gauge theories Andrew D. Bond

Fixed points of the renormalisation group play an important role in particle physics. Ultravio-
let (UV) fixed points are key for a fundamental definition of quantum field theories [1, 2] such as in
asymptotic freedom [3, 4] or in asymptotic safety [5]. Fixed points also serve to define the contin-
uum limit in lattice versions of quantum field theory. Low energy fixed points appear prominently
in phase transitions and the spontaneous breaking of symmetry. Fixed points may even play a role
for physics beyond the Standard Model at the electroweak energy scale and above [6].

In this contribution, we discuss recent advances in the understanding of weakly interacting
fixed points in 4d gauge theories coupled to matter [7]. In general, finding interacting fixed points
of quantum field theories is a challenging task. For a quantum field theory to possess a genuine
fixed point, we must find values for its couplings such that all β -functions vanish simultaneously.
The difficulty with this in practice is the fact that one has to deal with an infinite number of op-
erators in the theory, each with a corresponding coupling. Furthermore, in interacting theories
one does not know beforehand which operators, or combinations of operators, will correspond to
relevant, marginal, or irrelevant directions [8, 9]. One arena in which we may hope to be able to
find reliable results is that of perturbation theory. If we restrict ourselves to such a domain, and
search for fixed points which are weakly coupled, we gain two key advantages. Firstly, if interact-
ing fixed points can be made sufficiently weakly coupled, the perturbative loop expansion will be
trustworthy as we have information about the parametric size of higher loop corrections. Secondly,
by ensuring that anomalous dimensions are small, the scaling dimensions of operators will remain
close to their classical values, and the relevancy of operators will still be governed by their classi-
cal scaling dimension. This means that the only couplings whose relevancy we need to investigate
are those with canonically dimensionless coupling constants, corresponding to classically marginal
operators. Fortunately, the formal β -functions for such couplings are known for general four di-
mensional field theories [10, 11, 12, 13]. Hence, by studying such general expressions, we can
gain insights into the different types of perturbative fixed points that may arise in principle, and,
moreover, identify candidate theories which realise them, in practice.

In this spirit, a complete classification of weakly coupled fixed points in general 4d gauge
theories including necessary and sufficient conditions for existence has recently been achieved in
[7]. The main findings can be summarised as follows. Perturbative fixed points are either (i) free
(the Gaussian fixed point), or (ii) interacting in the gauge sector (Banks-Zaks fixed point) [14, 15],
or (iii) simultaneously interacting in the gauge and the Yukawa sector (gauge-Yukawa fixed points),
or (iv) products and combinations of (i),(ii) and (iii). Scalar self interactions, if present, must take
free or interacting fixed points of their own, compatible with vacuum stability, but are otherwise
irrelevant to the fixed point in the gauge sector. It has also been proven that Banks-Zaks fixed points
are invariably IR. In contrast, the Gaussian and the gauge-Yukawa fixed points can be either UV or
IR, depending on the particulars of the field content. It is well-known that Gaussian UV fixed points
play a central role for asymptotic freedom and the fundamental definition of quantum field theory
[3, 4]. In this light, weakly interacting gauge-Yukawa UV fixed points offer the intriguing prospect
that fundamental and predictive quantum field theories may exist even beyond the paradigm of
asymptotic freedom [16, 17].

To explain the unique dynamical mechanism underneath weakly interacting UV fixed points
we investigate a simple gauge theory with gauge coupling α = g2/(4π)2 interacting with fermionic
and/or scalar matter. Results straightforwardly generalise to more complex settings [7]. Within
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perturbation theory up to second order, the renormalisation group β -function β ≡ µ
dα

dµ
is given by

β =−Bα
2 +Cα

3 +O(α4) . (1)

At one loop order the only possible fixed point is the free one, α∗ = 0. Whether it is a UV or an
IR fixed point depends on the sign of the one loop coefficient B. It is determined by the gauge and
matter content of the theory and given by [3, 4, 18]

B =
2
3

(
11CG

2 −2SF
2 −

1
2

SS
2

)
. (2)

Here SF,S
2 are the Dynkin indices of the fermion and scalar representations, and CG

2 the quadratic
Casimir of the adjoint representation. The contributions from the gauge bosons and the matter
fields come with opposite signs, and so B may in general take either sign. For a sufficiently small
amount of matter, the gauge boson contributions dominate (B > 0) and the theory is asymptotically
free. On the other hand, if there is enough matter, the contributions from the fermion and scalar
fields dominate (B < 0) and the theory is IR free. In this case, higher loops are required to decide
the fate of the theory in the UV. At two loop, (1) may display an interacting fixed point

α
∗ =

B
C

(3)

In order to have a physically viable theory we need α ≥ 0 so that B ·C > 0, and in order for the
fixed point to be perturbatively reliable, we must have |B| � |C|. Similarly to the one-loop case,
the two-loop coefficient C (given below) may take either sign, depending on whether gauge boson
contributions dominate over matter field contributions (C < 0), or vice versa (C > 0). In the limit-
ing cases of large or small amounts of matter fields, we have B ·C < 0 and weakly interacting fixed
points are absent. It has long been known that by partially offsetting the gauge boson contributions
with matter, one may achieve B,C > 0 [14, 15] whereby the theory (1) displays the well-known
Banks-Zaks IR fixed point (3). Much work has gone into perturbative and non-perturbative explo-
rations of the related conformal window in view of physics beyond the SM [19, 20]. On the other
hand, there are no known examples for which both coefficients take negative signs B,C < 0, and in
which case the fixed point would be UV. To explore this possibility, we write the two-loop term as

C =
2

11

[
2SF

2
(
11CF

2 +7CG
2
)
+2SS

2
(
11CS

2 −CG
2
)
−17BCG

2

]
. (4)

The last term is non-negative if we arrange the matter content such that B ≤ 0. The first term
is manifestly non-negative, and we conclude that a theory with only fermions does not admit a
weakly interacting UV fixed point [14]. The sign of the middle term becomes negative iff repre-
sentations for scalar fields were to be found with a sufficiently small quadratic Casimir CS

2 <
1

11CG
2 .

Regrettably, however, this hope is futile: for any simple gauge theory, any non-trivial irreducible
representation has a quadratic Casimir with CR

2 ≥ 3
8CG

2 [7]. Moreover, this result imposes a strict
bound on the coefficient C,

C ≥CG
2

(
28
22

SF
2 +

25
22

SS
2−

34
11

B
)
. (5)

This result means that any IR free gauge theory (B≤ 0) invariably has C > 0. We conclude that a
gauge-only interacting fixed point of the type (1), (3) can at best be IR, but never UV.
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case gauge group Yukawa interacting FPs type

a) simple No Banks-Zaks (BZ) IR

b) semi-simple, no U(1) factors No BZ and products thereof IR

simple Yes Banks-Zaks IR
c) simple Yes Banks-Zaks and gauge-Yukawa IR

simple or abelian Yes gauge-Yukawa (GY) UV/IR

d) semi-simple w/ or w/o U(1) Yes BZ, GY and products thereof UV/IR

Table 1: Summary of weakly interacting fixed points in general gauge theories coupled to matter,
detailing the availability of Banks-Zaks (BZ) or gauge-Yukawa (GY) type fixed points, or combi-
nations and products thereof. The cases indicated under c) are illustrated in Fig. 1, see [7].

It is then natural to ask whether additional interactions may help generate an interacting UV
fixed point? Owing to (5), when B is small, the coefficient C is of order unity. Any further contri-
butions to the running of gauge couplings must appear at two-loop order, as otherwise couplings
become non-perturbative. This rules out scalar quartic self-interactions, as these do not enter the
running of the gauge couplings until at least three-loop. Making the gauge group semi-simple
does not help either: the two-loop contributions of additional gauge couplings are strictly positive
[21, 22]. This leaves us with the only remaining option which are Yukawa couplings. They modify
the running of gauge coupling (1) at two-loops, β → β +∆β , with ∆β =−2Y4 α2 and

Y4 = Tr[CF
2 YA (YA)†]/d(G) . (6)

The set of Yukawa matrices YA appears in the Lagrangian as ∼ 1
2(4π)YA

JKΦAΨJΨK , and d(G)

being the gauge group dimension. As Y4 ≥ 0, the contribution from Yukawa couplings to the gauge
running is always negative, offering the prospect that these may counterbalance the gauge coupling
contribution to negotiate for an interacting UV fixed point. To that end, we must examine the
running of the Yukawa couplings and check whether they can develop a fixed point alongside the
gauge coupling. To lowest non-trivial order, the β -function for the Yukawa matrix reads

β
A
JK = EA

JK(Y )−α FA
JK(Y ) , (7)

Notice that the gauge contribution arises with the opposite sign of the pure Yukawa contributions.
Also, the quantity E is cubic in the Yukawa matrices while F is linear. Hence, any solution to the
nullcline condition β A

JK = 0 must, by dimensional analysis, be of the form YA
JK = g

4π
CA

JK for some
numerical matrices CA of order unity. Note that perturbativity in the gauge coupling entails per-
turbativity in the Yukawa coupling. If we project the gauge β -function onto this Yukawa nullcline,
the net effect is that the two-loop term C is replaced by an effective two-loop term C′ given by

C→C′ =C−2Tr[CF
2 CA (CA)†]/d(G)< C . (8)

The projected gauge β -function then takes the form (1) subject to C→C′. The Yukawa-induced
shift (8) has far-reaching implications. Firstly, if B,C,C′ > 0 the theory is asymptotically free and
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Figure 1: Phase diagrams of simple gauge-Yukawa theories in dependence on the parameters B,C
and C′. From top-left to bottom-left, clockwise: asymptotic freedom with Gaussian (G) UV fixed
point (B > 0 > C,C′); asymptotic freedom with Banks-Zaks (BZ) fixed point (B,C > 0 > C′);
asymptotic freedom with Banks-Zaks and gauge Yukawa (GY) fixed point (B,C,C′ > 0); asymp-
totic safety with gauge Yukawa fixed point (C > 0 > B,C′), see [7].

will display a novel interacting IR fixed point α∗ = B/C′ besides the Banks-Zaks. Secondly, if
B < 0, we have C > 0 and the fixed point (3) is not available. However, if Yukawa couplings
can be found such that C′ < 0, a novel UV fixed point arises at α∗ = B/C′. No such fixed point
can possibly exist without Yukawa interactions. This result establishes that Yukawa interactions,
and hence elementary scalar fields and charged fermions, offer a unique mechanism for interacting
UV fixed points to arise in weakly coupled gauge theories. Additional conditions arise from the
fixed point in the scalar sector together with the stability of the vacuum [16, 17]. The full range of
weakly interacting fixed points for general four-dimensional field theories including necessary and
sufficient conditions for existence are given in [7], A brief summary is given in Tab. 1.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
0
8

Interacting ultraviolet completions of four-dimensional gauge theories Andrew D. Bond

Next, we illustrate our findings for simple gauge theories coupled to matter on the level of
their phase diagrams, see Fig.1, and in dependence on the parameters B,C and C′. Four basic cases
arise. Asymptotically free gauge theories with B > 0 > C have no weakly coupled fixed points,
and their phase diagram displays the Gaussian UV fixed point together with UV free trajectories
emanating out of it (red shaded areas). Theories with B,C > 0 >C′ additionally develop a Banks-
Zaks IR fixed point. Yukawa couplings are immaterial for this. Progressing towards theories with
B,C >C′> 0 we now additionally observe a fully interacting IR gauge-Yukawa fixed point, besides
the Banks-Zaks. The theory also comes out more strongly coupled at the gauge-Yukawa than at
the Banks-Zaks fixed point. The main new effect in theories with C′ > 0 as opposed to those with
C′ < 0 is that the UV-free trajectories are attracted into the gauge-Yukawa fixed point, which is
genuinely attractive in both the gauge and the Yukawa directions. It characterises a second order
phase transition between a symmetric phase and a phase with spontaneous symmetry breaking
where the scalars acquire a non-vanishing vacuum expectation value. Finally, we consider simple
or abelian gauge theories with B,C′ < 0 where asymptotic freedom is absent. Most importantly,
however, we observe a weakly interacting gauge-Yukawa fixed point which displays an attractive
and a repulsive direction. The fixed point therefore qualifies as a UV completion for the theory. A
concrete example of such a theory can be found in [16].

The discussion of phase diagrams generalises to more complex settings. Gauge theories with
several independent Yukawa couplings will lead to several parameters C′, which, depending on their
magnitudes, may generate several gauge-Yukawa fixed points. Phase diagrams will then display
an enhanced structure owing to additional cross-over phenomena amongst the various fixed points.
An even richer pattern arises for theories with product gauge groups. For each gauge coupling
individually our discussion based on the “diagonal” coefficients B, C and C′ applies. As a novel
addition, theories may also display “off-diagonal” Banks-Zaks and gauge-Yukawa fixed points as
well as fully interacting products thereof, depending on the details of the matter content. Moreover,
each interacting fixed point naturally relates to a “conformal window” similar to those of QCD with
fermionic matter [19]. Some of the fixed points of (product) gauge theories offer UV conformal
windows around fixed points with exact asymptotic safety at weak coupling. It is therefore natural
to speculate that some such models may qualify as UV completions for the Standard Model of
particle physics.

In summary, we have identified all weakly interacting fixed points of four-dimensional gauge
theories in the regime where gauge and matter fields remain good fundamental degrees of free-
dom. The virtue of our analysis are structural insights into the mechanisms for interacting fixed
points together with strict perturbative control. We thereby have established that weakly interacting
low-energy fixed points are either of the Banks-Zaks or gauge-Yukawa type, or combinations and
products thereof (Tab. 1). They offer a rich spectrum of phenomena including phase transitions
and the spontaneous breaking of (chiral) symmetry. We have also seen that weakly interacting
high-energy fixed points are invariably of the gauge-Yukawa type. Hence, interacting UV fixed
points necessarily require elementary scalar fields such as the Higgs. It is quite intriguing that the
dynamical mechanism to tame the notorious Landau poles of general infrared free gauge theories
is unique, and, owing to group-theoretical limitations (5), exclusively delivered through Yukawa
interactions. We conclude that our findings open a window of opportunities towards perturbative
UV completions of the Standard Model beyond the paradigm of asymptotic freedom.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
0
8

Interacting ultraviolet completions of four-dimensional gauge theories Andrew D. Bond

References

[1] K. G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the
Kadanoff scaling picture, Phys.Rev. B4 (1971) 3174–3183.

[2] K. G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of critical
behavior, Phys.Rev. B4 (1971) 3184–3205.

[3] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30
(1973) 1343–1346.

[4] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973)
1346–1349.

[5] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, . In General Relativity: An
Einstein centenary survey, ed. S. W. Hawking and W. Israel, 790- 831.

[6] D. F. Litim, Renormalisation group and the Planck scale, Phil. Trans. Roy. Soc. Lond. A369 (2011)
2759–2778, [1102.4624].

[7] A. D. Bond and D. F. Litim, Theorems for Asymptotic Safety of Gauge Theories, 1608.00519.

[8] K. Falls, D. F. Litim, K. Nikolakopoulos, and C. Rahmede, A bootstrap towards asymptotic safety,
1301.4191.

[9] K. Falls, D. F. Litim, K. Nikolakopoulos, and C. Rahmede, Further evidence for asymptotic safety of
quantum gravity, Phys. Rev. D93 (2016), no. 10 104022, [1410.4815].

[10] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General
Quantum Field Theory. 1. Wave Function Renormalization, Nucl.Phys. B222 (1983) 83.

[11] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General
Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B236 (1984) 221–232.

[12] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General
Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B249 (1985) 70–92.

[13] M.-x. Luo, H.-w. Wang, and Y. Xiao, Two loop renormalization group equations in general gauge
field theories, Phys. Rev. D67 (2003) 065019, [hep-ph/0211440].

[14] W. E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev.
Lett. 33 (1974) 244.

[15] T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless
Fermions, Nucl. Phys. B196 (1982) 189.

[16] D. F. Litim and F. Sannino, Asymptotic safety guaranteed, JHEP 12 (2014) 178, [1406.2337].

[17] D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa
theories, JHEP 01 (2016) 081, [1501.03061].

[18] D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories. 1, Phys. Rev. D8 (1973) 3633–3652.

[19] L. Del Debbio, The conformal window on the lattice, PoS Lattice2010 (2014) 004, [1102.4066].

[20] D. D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher
dimensional representations, Phys. Rev. D75 (2007) 085018, [hep-ph/0611341].

[21] D. R. T. Jones, Two Loop beta Function for a G(1) x G(2) Gauge Theory, Phys. Rev. D25 (1982) 581.

[22] F. del Aguila, G. D. Coughlan, and M. Quiros, Gauge Coupling Renormalization With Several U(1)
Factors, Nucl. Phys. B307 (1988) 633. [Erratum: Nucl. Phys.B312,751(1989)].

6

http://xxx.lanl.gov/abs/1102.4624
http://xxx.lanl.gov/abs/1608.00519
http://xxx.lanl.gov/abs/1301.4191
http://xxx.lanl.gov/abs/1410.4815
http://xxx.lanl.gov/abs/hep-ph/0211440
http://xxx.lanl.gov/abs/1406.2337
http://xxx.lanl.gov/abs/1501.03061
http://xxx.lanl.gov/abs/1102.4066
http://xxx.lanl.gov/abs/hep-ph/0611341

