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1. Introduction

The discovery of the Higgs field has rendered the Standard Model (SM) complete. However,
the origin of the potential responsible for the spontaneous symmetry breaking (SSB) which is
behind the Brout-Englert-Higgs (BEH) mechanism is still unknown, and the fine tuning necessary
to obtain the Higgs mass measured from experiment raises doubts on the naturalness of the Higgs
in the SM.

One possible way to resolve these difficulties is to conjecture the existence of an extra dimen-
sion. From the point of view of our four-dimensional space-time the components of the gauge field
in the fifth dimension would behave as an additional scalar, giving us a SM-like Higgs field [1].
Hosotani [2] has shown that this idea could work in perturbation theory, if fermionic degrees of
freedom are included in the theory. Non-perturbatively we have observed the BEH mechanism tak-
ing place in a pure gauge theory [3, 4] contrarily to perturbation theory’s predictions. For a recent
review of GHU studies on the lattice see [5].

Using an anisotropic action, and enforcing orbifold boundary conditions on the extra dimen-
sion, we have observed that the ratio of the measured H and Z boson masses can reach the experi-
mental value and, in exactly the same region of the phase diagram, the theory exhibits dimensional
reduction [4]. The simultaneous presence of these two features lends considerable strength to the
claim that reality could contain (at least) one more dimension than what we currently think.

The introduction of a fifth dimension, on the other hand, brings a number of new obstacles
into the game. Firstly, such theories are known to be perturbatively non-renormalizable, making it
difficult to connect lattice calculations with possible future experimental results. Moreover, previ-
ous lattice studies have not been able to identify a second order bulk phase transition point on the
phase diagram with periodic boundary conditions along the fifth dimension [6, 7, 8]. Also in our
study of the orbifold [4] no second order phase transition could be observed. Despite this latter
drawback, in this work we will show that, at finite cut-off, the theory is sufficiently well behaved
to be used to derive a 4-d effective theory that could reproduce and possibly complete the gauge-
Higgs part of the SM electro-weak sector. We accomplish this by constructing a line of constant
physics (LCP) which shows that, in the region where mH/mZ > 1 and dimensional reduction oc-
curs, several physical quantities remain cut-off independent despite a change of 20% in the lattice
spacing.

This report is organised as follows. In section 2 we will construct the five-dimensional theory
on the lattice. In section 3 we will give a short summary of the previously known results. In section
4 we discuss the construction of a LCP and present our initial results in this aspect.

2. Theory

We study a five-dimensional SU(2) gauge theory. On the lattice, the theory is defined by the
action

Sorb
W =

β4

2 ∑
P4

w · tr{1−P4}+
β5

2 ∑
P5

tr{1−P5} (2.1)

where β4 and β5 are the gauge couplings associated with Wilson plaquettes spanning the standard
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Figure 1: A sketch of the orbifold lattice. The SU(2) links are depicted in blue and the U(1) links on the boundary in

red. The magenta links connecting the two are so-called hybrid links, which gauge-transform as SU(2) on one end and

as U(1) on the other.

four dimensions (P4) and the fifth dimension (P5) respectively. In the sums of eq. 2.1 plaquettes are
counted with one orientation only. As already mentioned, we apply orbifold boundary conditions in
the extra dimension and leave the other four dimensions periodic1. A consequence of this choice of
boundary conditions is that, at the orbifold fixed points, the gauge group is explicitly broken down
to U(1). On the same boundaries, moreover, the weight w which is associated with plaquettes P4

takes a value w = 1/2, whereas in the orbifold’s bulk it remains 1. It follows that the theory is
defined on the interval I =

{
nµ ,0≤ n5 ≤ N5

}
, as depicted in figure 1. The theory is completely

defined by the three parameters β4, β5 and N5.
On the boundaries of the extra dimension, assuming that some mechanism of dimensional

reduction would take place2, this gauge theory is expected to reduce to the Abelian Higgs model.
The scalar degrees of freedom can be probed, for example, by taking the trace of Polyakov loops
winding in the extra dimension, while a vector boson operator can be constructed by displacing
them in a spatial direction [3].

3. Phase Diagram and Spectrum

This section contains a summarized version of the results from [4]; we report them here in
order to better put the LCP study into context.

As shown in figure 2, the theory contains three phases, characterized by the shape of the static
quark potential, which we measure using HYP-smeared Wilson loops [10]. All phase transition
points in figure 2 are of first order. In the confined phase the potential is string-like everywhere in
the 5-d space-time.

In the hybrid phase we continue to observe confined physics in the bulk SU(2) hyperplanes,
while the two U(1) boundaries now are best described by a Coulomb-type potential. The boundary-
driven transition, which occurs at β4 ' 2.02, is entirely consistent with that observed on a pure
four-dimensional U(1) system [11] and with the confined-Coulomb phase transition observed at
low Higgs-gauge coupling in the 4-d Abelian-Higgs model [12, 13]. This behaviour shows that
in this phase the physical content of a 4d hyperplane is entirely decided by the gauge group, and

1For a more detailed definition of the theory and its symmetries on the orbifold, see [9].
2In section 3 we will show that this is indeed the case.
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Figure 2: Phase diagram of the theory.

therefore the layers must be very weakly coupled. This result, which at the limit β5→ 0 is obvious,
persists up to the hybrid-Higgs phase transition, with small effects due to β5 > 0, which are visible
by measuring the Sommer scale [14] in the confined bulk (but not in the shape of the potential),
only in the vicinity of the phase transition.

The third phase is dubbed Higgs phase because it is in this region that SSB is observed. Here,
massive scalar and vector boson can be measured and the static potential is, consistently, of Yukawa
type. Moreover, the fit to the potential is confirmed by spectroscopic measurements, which con-
firm the presence of a massive gauge boson and reveal that of a massive scalar. From the functional
shape of the static potential one can obtain information on the dimensionality of the system. From
such observations it appears that the dimensional reduction observed in the hybrid phase persists, in
some respects, also on the other side of the phase transition: when in the vicinity of the phase tran-
sition, the static potential measured on the orbifold’s boundary is always a 4-dimensional Yukawa
potential, while in the orbifold’s bulk a 5-dimensional Yukawa potential is observed3. This dimen-
sional reduction mechanism hints at localization on the orbifold boundary.

A very interesting result, and a very important one with respect to the plausibility of this GHU
theory, is that, in the same region of the Higgs phase where dimensional reduction is observed, the
ratio ρ ≡ mH/mZ of the Higgs to the scalar mass reaches the value measured from experiment.
Figure 3 shows a detail of the phase diagram, where in the Higgs phase different shades of green
highlight regions with a different ρ regime. In the regions represented by the two darker shades
of green that both dimensional reduction and a correct mass hierarchy have been simultaneously
observed.

4. Lines of Constant Physics
4.1 LCPs in Theory

When studying lattice theories which possess a continuum limit, lines of constant physics
are employed to extrapolate the "physical" value of any measurable quantity. This is done by
constructing a line in the parameter space, on which a certain number of dimensionless physical

3Measurements subsequent the publication of [4] indicate that, if one measures near enough to the phase transition,
the potential can appear of the 4-dimensional Yukawa type also in the bulk.
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Figure 3: Contour plot of ρ ≡ mH/mZ varying the theory’s β4 and β5 parameters The two darker shades of green

indicate the region where the boson masses exhibit the correct hierarchy. All the measurements in this plots were

performed at N5 = 4.

quantities are kept fixed, usually at their experimental value. In a theory with N parameters only
N − 1 dimensionless quantities can be kept fixed on any such line; the value of all remaining
observables might instead show a dependency on the cut-off. The power of the method resides in
the fact that, when the LCP approaches the continuum limit, all quantities reach values that are free
from cut-off effects. In other words, if the N− 1 quantities which define the LCP are set to their
physical value, at the critical point all quantities should reach their physical value as well.

To simplify the process described above, one can even fix only M < N− 1 quantities to con-
struct a line of partially constant physics (LPCP), which presents the same behaviour when ap-
proaching the continuum limit, but which will then not be unique [15].

In a theory without a continuum limit, or with only a trivial one, the construction of a line of
constant physics will serve a different purpose, i.e. to verify whether or not the theory can be used
as an effective theory which is valid for energies much lower than the finite cut-off.

In order to do so, one would construct an LCP exactly as in a theory with a continuum limit:
keeping N − 1 dimensionless quantities fixed and changing the parameters enough to observe a
sizeable change in the cut-off. As stated above, there are no guarantees that quantities other than
the N− 1 fixed ones will not change on this line; they are, in fact, expected to vary due to finite
lattice spacing effects. Nevertheless, one might find that there exists a portion of the LCP where
all observed quantities appear, within errors, to be constant. This is equivalent to the statement that
the size of the cut-off effects is smaller than the statistical accuracy on these observables.

On such a segment of the LCP the theory, even if it, as in our case, might be non-renormalizable,
can be used as an effective theory to describe reality. Moreover, if a way to set the scale is known,
the maximal energy for which the effective theory is valid can be computed from the minimal lat-
tice spacing on the segment.

Since our goal is to test the possibility of using the 5-dimensional theory on the orbifold to
reproduce at low energies the EW sector of the SM, we concentrate on the construction of LCPs
in the theory’s Higgs phase. As a first step, to decrease the technical challenge of exploring a
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Figure 4: The left panel shows the values of ρ on the line of partially constant physics defined by ρ = 1.15. In the

right panel the control quantities ρ2 and ρ3, measured at the same parameter values, are shown.

3-dimensional parameter space, we will attempt to construct lines of partially constant physics
at a fixed value of N5, by imposing only the requirement that ρ ≡ mH/mZ = const. In order to
parametrise the change in the lattice spacing we will observe the change in the quantity a4mZ . We
will then repeat the procedure at a few different values of N5; if a full LCP can be found it will be
lying on some of the points on the LPCPs constructed at fixed N5.

4.2 LCP Observation

We search for lines of partially constant physics by imposing the requirement ρ ≡ mH/mZ =

1.15 within statistical accuracy. Moreover, we measure the other two dimensionless quantities
ρ2 ≡ mZ′/mZ and ρ3 ≡ mH ′/mZ to check whether the points found on the LPCPs might belong
to a more restricting LCP, e.g. if we observe that ρ2 remains constant w.r.t. the change of lattice
spacing, or even better that the model can be used as an effective theory in the region we search,
if all three quantities should show no cut-off dependence. We have measured these quantities at
N5 = 4,6,8. Figure 4 shows the first promising results in this direction. The left panel of the figure
shows the values of ρ as a function of the lattice coupling β4; the value of the second coupling β5

has been adjusted to remain on the LPCP defined by ρ = 1.15 with a precision of ∆ρ = 0.05. while
it appears to be more sensitive to the changes in N5. Considering all measurements, the quantity
a4mZ has changed of 20%, going from 0.155 measured at N5 = 4 to 0.131 measured at N5 = 8.

The right panel of figure 4 shows that ρ2 and ρ3 remain fairly constant on the LCPC, which
suggests that cut-off effects are contained. It is worth noting that we measure a sizeable gap be-
tween the ground and the excited states, with mZ′ being 2.3 and mH ′ 4.5 times larger than mZ .

The choice of ρ = 1.15 instead of the physical value of 1.39 is only due to the lesser difficulty
in performing Monte Carlo simulations slightly further away from the phase transition4. Since
this study is a proof-of-concept for the viability of the model rather than a study of its physical
properties, the existence of any line of constant physics in the region of the phase diagram in

4As shown in [4], the value of ρ increases as the parameters approach the Higgs-hybrid phase transition.
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which the system is dimensionally reduced is the most important result. Nevertheless, work on
constructing an LCP at physical ρ ' 1.39 is underway.

5. Conclusion

In the previous sections we have shown how this 5-dimensional GHU theory contains all the
features which would be required in order for it to be a viable alternative, not affected by the
hierarchy problem, to the current SM description of the electroweak sector. In older works it has
been shown that, in a definite region of the Higgs phase, a mass hierarchy resembling that observed
in experiments can be achieved, and that in the same region the system appears dimensionally
reduced.

In the present addition to the study, we showed that these two absolutely non-trivial features
are not just a result of some particularly lucky combination of parameters, but they persist despite
a change of about 20% in the lattice spacing. Although this value is not yet sufficient to allow a
conclusive statement on the matter, the results presented here point in the direction of this theory
being worth studying further as a possible effective theory at energies below the cut-off.
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