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The SU(4) gauge theory with two flavors of Dirac fermions in the sextet representation shares
features of a candidate for a composite Higgs model. The analogue of the Higgs multiplet of
the Standard Model lives in the Goldstone manifold resulting from spontaneous breaking of the
global symmetry SU(4) to SO(4). The Higgs potential arises from interaction with the particles
of the Standard Model. We have computed the gauge boson contribution to the Higgs potential,
using valence overlap fermions on a Wilson-clover sea. The calculation is similar to that of the
electromagnetic mass splitting of the pion multiplet in QCD.

34th annual International Symposium on Lattice Field Theory
24–30 July 2016
University of Southampton, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
1
6

Radiative contribution to the effective potential in a composite Higgs model B. Svetitsky

1. Introduction

UV-complete candidate theories for a composite Higgs boson [1] plus a partially composite
top quark [2] have been catalogued by Ferretti and Karateev [3]. Ferretti [4] has made a case for
the theory built on an SU(4) gauge theory with a certain fermion content (and see [5]). We focus
here on the composite-Higgs side of the model, which is based on a low-energy theory that is an
SU(5)/SO(5) sigma model. This scheme of spontaneous symmetry breaking emerges from an
SU(4) gauge field coupled to 5 Majorana fermions in a real representation of the gauge group. In
order to defer the difficulties attendant on odd numbers of fermion flavors (and Majorana fermions,
at that), we have begun a study [6, 7] of the theory with 4 Majorana fermions, equivalent to two
Dirac fermions. As in Ferretti’s model, we put the fermions into the (real) sextet representation
of the SU(4) gauge group. The global symmetry of this theory is SU(4), broken spontaneously to
SO(4).

The composite-Higgs paradigm constructs the Higgs multiplet of the Standard Model from the
Nambu–Goldstone bosons of the gauge theory. The Higgs potential has its origin in loop correc-
tions from coupling these NG bosons to the Standard Model. I will present here a calculation [7] of
the radiative part of the Higgs potential, via the vacuum polarization ΠLR(q2). This calculation has
much in common with the electromagnetic contribution to the masses of the pseudo-NG bosons of
QCD, namely, the pions. The latter is a classic calculation [8], which has been implemented on the
lattice [9, 10, 11].

2. Composite Higgs

The aim of a composite Higgs theory is a natural construction of a Higgs boson that is protected
from high energy scales. One posits a new strong sector, called hypercolor, with a scale f ; to
hide the sector from experiments, one assumes f � v, where v is the Higgs vev that defines the
electroweak scale. The hypercolor theory has spontaneous symmetry breaking, yielding a number
of NG bosons. Among these NG bosons are the Higgs multiplet h of the electroweak theory. As
NG bosons, the h fields are exactly massless and there is no potential V (h) at all.

Once the hypercolor theory is coupled to the Standard Model, loop diagrams will generate an
effective potential,

Veff(h) = (α−4β )(h/ f )2 +O(h4). (2.1)

The coefficient α has its origin in gauge boson loops, α = (3g2 + g′2)CLR, where CLR is a low-
energy constant that is positive definite [12]. This is the subject of today’s talk. The coefficient β

comes from a top-quark loop, β = −(y2
t /2)Ctop, and it is probably positive; I will have no more

to say about it today. The success of the composite-Higgs model hinges on demonstrating the
inequality 4β > α . This destabilizes the minimum of Veff(h) at h = 0 and gives the correct Higgs
phenomenon of the electroweak theory. Moreover, the induced electroweak scale had better be
small, v =

√
2〈h〉 � f .

3. The model

The low-energy theory of the hypercolor model must include the Higgs multiplet among its
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NG bosons. An economical scheme is to have a global SU(5) symmetry broken spontaneously
to SO(5): Since SO(5) ⊃ [SU(2)L × SU(2)R], the electroweak theory can gauge the unbroken
SU(2)L ×U(1) and have a custodial SU(2)R left over. Such a symmetry-breaking scheme de-
mands that the hyperfermions come in a real representation of hypercolor, which restricts the hy-
percolor group severely if it is to be asymptotically free. The solution1 is an SU(4) gauge the-
ory with fermions in the antisymmetric two-index representation—the sextet of SU(4). With N f

Dirac flavors we would have SU(2N f )→ SO(2N f ), but with 5 Majorana fermions we can have
SU(5)→ SO(5) as desired. As I said in the introduction, for technical reasons our lattice model is
not exactly the above, but close: N f = 2 Dirac fermions in the sextet of hypercolor, which gives the
scheme SU(4)→ SO(4).

4. The Higgs potential

The gauge contribution to the Higgs potential comes from a vacuum polarization diagram
(actually a difference between VV and AA diagrams),

CLR =
∫

∞

0
dq2q2

ΠLR(q2), (4.1)

where ΠLR is a correlation function of chiral currents,

1
2

δab(q2
δµν −qµqν)ΠLR(q2) =−

∫
d4xeiqx 〈JL

µa(x)J
R
νb(0)

〉
. (4.2)

For an analytical guess, we can try saturating the correlator with lowest resonances—the minimal
hadron approximation (MHA),

ΠLR(q2)≈ f 2
π

q2 −
f 2
ρ

q2 +m2
ρ

+
f 2
a1

q2 +m2
a1

. (4.3)

This is not a bad approximation in the QCD case.

5. Lattice calculation

Our lattice simulations [7] used different fermion schemes for the sea fermions and the valence
fermions. We generated configurations with Wilson–clover fermions, smoothed with nHYP smear-
ing, with an added pure gauge term to suppress nHYP dislocations. We generated two ensembles,
with different couplings but with similar lattice spacings, in order to gauge sensitivity to the lattice
action without actually taking a continuum limit. The chiral currents are sensitive to the treatment
of chiral symmetry, and hence we calculated the current correlators from propagators of overlap
fermions with a range of valence masses mv. In the limit mv→ 0, the currents satisfy exact chiral
Ward identities and the correlator gives CLR via Eq. (4.1). The lattice volume in each case was
123×24, not large enough to eliminate finite-volume effects with any confidence.

We adopted and compared two approaches to calculating the integral CLR and taking the chiral
limit. A key difficulty is indicated by the MHA, Eq. (4.3): ΠLR has an integrable pole at q2 = 0.

1Ferretti [4] noted a bonus: The addition of fermions in the fundamental representation of SU(4) offers a construc-
tion of a partially composite top quark. W. Jay will describe this in the next talk [13].
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5.1 Direct summation

For a direct approach, we calculated ΠLR(qµ) as a Fourier transform of the current correlator
at each nonzero lattice momentum qµ . In the summation,

CLR(mv) =
16π2

V ∑
qµ

ΠLR(qµ), (5.1)

we include a term at q = 0, modeling it by an integral of the continuum expression for the pole,

ΠLR(qµ)' p+
f 2
π

q2 . (5.2)

Here the presence of fπ is suggested by the MHA, Eq. (4.3); we obtain fπ from overlap spec-
troscopy with the same valence mass mv. The pedestal p is estimated from the values of ΠLR at
neighboring, nonzero momenta. We thus obtain the result for CLR(mv) plotted in Fig. 1(a). Recall
that we need the extrapolation to the chiral limit, mv = 0.
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Figure 1: (a) The low energy constant CLR as a function of valence mass mv, extrapolated to zero. The
two ensembles give different results as mv → 0. (b) The ratio CLR/ f 2

π , wherein the ensembles agree. All
quantities are in lattice units. Our two ensembles have equal lattice spacings, defined by the Sommer scale
r1, so the comparisons shown are valid.

There is a clear discrepancy between the two ensembles, amounting to a factor of 2. The two
ensembles also give differing results for the valence spectra, particularly at small mv. We can show
that these discrepancies have a common origin. The integral of the MHA, Eq. (4.3), gives

CLR ≈ f 2
π

m2
a1

m2
ρ

m2
a1
−m2

ρ

log

(
m2

a1

m2
ρ

)
, (5.3)

suggesting a direct correlation between CLR and fπ .2 Indeed, plotting the ratio CLR/ f 2
π gives

Fig. 1(b), in which we see agreement in the ratio, in the chiral limit.
2Here we have used the Weinberg sum rules, valid only in the chiral limit, to eliminate fρ and fa1 — even for mv > 0.
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5.2 One-dimensional fit to the minimal hadron approximation

An alternative path to CLR is to fit the data for ΠLR(qµ) to the MHA formula, Eq. (4.3), treat-
ing all five constants as free parameters. This gives a function of q2 that can then be integrated
numerically or analytically. For a given value of mv, the complete set of 4d data for ΠLR cannot
be fit to five parameters, and thus we choose a ray in momentum space, average ΠLR on that ray
over lattice symmetry operations, and fit to the MHA as a function of q2. Fig. 2 shows the quality
of the fits, for a ray chosen along the time axis and for a space–space diagonal ray (the lattices are
asymmetric in time vs. space). In general we find that the fits have excellent χ2 as long as mv is not
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Figure 2: Left: q2ΠLR(q2) along the time axis in momentum space, fitted to the MHA formula, for 5 values
of mv, in ensemble 1. Right: The same, for a single value of mv, along a diagonal ray.

too large. The parameter fπ that emerges from the fits is consistent with the value extracted from
overlap spectroscopy (and used to estimate the pole in Sec. 5.1). The values of mρ and ma1 , how-
ever, do not agree well with the spectroscopic values; moreover, the corresponding decay constants
come with large error bars. This is not too surprising, since after all the MHA tries to model a
multiparticle cut (in the chiral limit) with poles, and it would be surprising indeed if the parameters
coincide with physical particles.

Integrating the fitted functions as in Eq. (4.1) gives the results plotted in Fig. 3. The extrapo-
lations to mv = 0 agree well with the results of direct summation, which means, again, that the two
ensembles agree when we compare values of CLR/ f 2

π .

6. Conclusions

We have calculated the low-energy constant CLR on two gauge ensembles, using two different
procedures made necessary by the pole in ΠLR at q = 0. We find good agreement between the
methods, even though the ensembles do not agree with each other.

We have studied the systematics of the fitting and integration procedures at length, and have
not found variations larger than the statistical errors plotted. We can thus carry these procedures
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Figure 3: The integral (4.1) of ΠLR obtained from fits to the MHA. The extrapolations to mv = 0 agree well
with the results of Sec. 5.1. (The hashed points are the extrapolations shown in Fig. 1.)

forward to larger volumes and towards a systematic continuum limit; we would also have to take
the chiral limit in the sea quarks, according to mixed-action chiral perturbation theory [14, 15].
While the ensembles considered here contained only sextet fermions, we will soon be applying
these lessons to a model with both sextet and fundamental fermions, aiming eventually at a full
implementation of Ferretti’s model, with 5 of the former (Majorana flavors) and 3 of the latter
(Dirac).
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