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1. Introduction

Five-dimensional maximally supersymmetric Yang-Mills (MSYM) theory has generated a lot
of interest in the recent years [1, 2, 3, 4, 5, 6, 7, 8]. This theory takes part in the AdS-CFT corre-
spondence and its finite temperature properties have been investigated recently in the planar limit.
Both the gauge theory and supergravity calculations show that the free energy has N3 scaling be-
havior in the large-N limit [9]. The five-dimensional gauge theory has a UV completion in the
six-dimensional (2,0) superconformal theory. It was conjectured recently [1] that 5D MSYM cap-
tures all the degrees of freedom of the parent six-dimensional theory suggesting that these two
theories are the same.

We can learn a lot about the six-dimensional (2,0) theory through the AdS-CFT correspon-
dence, where the (2,0) theory is conjectured to be dual to M-theory (or supergravity) on AdS7×S4

background [10]. Supergravity calculations reveal that the free energy of the (2,0) theory has N3

scaling behavior [9]. One can compactify the (2,0) theory on a circle to obtain the 5D MSYM.
Since the N3 behavior remains in the supergravity dual after compactification, one might expect
to find some indication of it in the 5D MSYM. In Ref. [6] the N3 scaling behavior has been re-
produced in the five-dimensional theory, at large ’t Hooft coupling, through calculations based on
large-N matrix model, agreeing with the supergravity prediction.

In the five-dimensional theory the square of the gauge coupling has the dimension of length
and a simple power counting suggests that the theory is not perturbatively renormalizable. The 6D
theory is believed to be UV finite suggesting that the 5D theory is also UV finite in order for the
conjecture in Ref. [1] to hold. In Ref. [7] the authors computed the six-loop four-point correlation
function of the 5D theory in the planar limit and showed that it is divergent. This indicates that the
connection between the five- and six-dimensional theories is not so straightforward and the claim
that these two theories are equivalent may not be true. Though this conjecture may not be true due
to the existence of the UV divergences in 5D MSYM, one can still expect that the supersymmetric
observables of these two theories match. For example, one can compute the expectation values of
the Wilson loop in the 5D MSYM, and through the relation between the compactification radius
and Yang-Mills coupling, one could compute the Wilson surface in the (2,0) theory.

We provide details of the construction of a supersymmetric lattice for five-dimensional max-
imally supersymmetric Yang-Mills theory. See Ref. [11] for recent developments in the area of
lattice supersymmetry.

2. Continuum 5D MSYM

The five-dimensional MSYM theory can be obtained by dimensional reduction of N = 1
SYM in ten dimensions. The five-dimensional theory resulting from dimensional reduction has
N = 2 supersymmetry, with a Euclidean rotation group SOE(5) and an R-symmetry group SOR(5).
The action of the five-dimensional theory is

S5 =
1
g2

5

∫
d5x Tr

(1
4

FmnFmn +
1
2

Dmφ jDmφ j +
1
4
[φ j,φk][φ j,φk]

−iλ
aX
(γm) b

a DmλbX −λ
aX
(γ j) Y

X [φ j,λaY ]
)
, (2.1)
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where the spinor indices (a,b) correspond to the Euclidean rotation group and the indices (X ,Y )
that of the R-symmetry group.

Since the R-symmetry group of the five-dimensional theory is as large as its Euclidean space-
time rotation group we can maximally twist this theory to obtain a twisted version of the theory.
In five dimensions the twisting process is unique and it leads to a twisted theory with the B-model
type twist. The topologically twisted version of this theory has been constructed in Ref. [12] and
we will follow the same procedure for the twisted theory in the continuum. In order to obtain
the twisted version of this theory we take the new rotation group of the theory to be the diagonal
subgroup of SOE(5)× SOR(5). This amounts to identifying the spinor indices, a and X , and the
spacetime and internal symmetry indices m and j.

The 5D theory has the following action after twist

S5 =
1
g2

5

∫
d5x Tr

(1
4
F mnFmn−dDmφm−

1
2

d2− iχmnDmψn− iψmDmη

− i
8

εmncdeχdeDcχmn

)
, (2.2)

where φm is now promoted to a five-dimensional vector field after twisting and η , ψm and χmn are
twisted fermions. It is natural to combine the two vector fields Am and φm to form a complexified
gauge field: Am = Am + iφm and A m = Am− iφm. The complexified field strengths appearing in
the above action are defined as

Fmn ≡ [Dm,Dn], F mn ≡ [Dm,Dn], (2.3)

with the complexified covariant derivatives: Dm ≡ ∂m +[Am, · ], Dm ≡ ∂m +[A m, · ].
The auxiliary field d in the above action can be integrated out using the equation of motion

d =−Dmφm =
i
2
[Dm,Dm]. (2.4)

The supersymmetry charges of the original theory also undergo a decomposition similar to
that of the fermions, resulting in scalar, vector and anti-symmetric tensor supercharges, Q, Qm and
Qmn, respectively. The twisted supersymmetry algebra contains a subalgebra in which the scalar
supercharge is strictly nilpotent: Q2 = 0. Since this subalgebra does not generate any translations
we can easily transport the theory on to the lattice by preserving one supersymmetry charge exact
at finite lattice spacing.

The twisted action can be written as a sum of Q-exact and Q-closed terms

S5 = QΛ− 1
g2

5

∫
d5x Tr

i
8

εmncdeχdeDcχmn, (2.5)

where Λ is a functional of the fields

Λ =
1
g2

5

∫
d5x Tr

( i
4

χmnFmn−ηDmφn−
1
2

ηd
)
. (2.6)

It is easy to see that the twisted action is Q-invariant. The Q-exact piece vanishes trivially
due to the nilpotent property of the scalar supercharge and the vanishing of Q-closed piece can be
shown through the Bianchi identity for covariant derivative

εmncdeDcF de = εmncde[Dc, [Dd ,De]] = 0. (2.7)
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The supersymmetry transformations generated by the scalar supercharge have the following
form

QAm = ψm, Qψm = 0, QA m = 0, (2.8)

Qχmn =−iF mn, Qη = d, Qd = 0, (2.9)

and it is easily seen that the Q supersymmetry charge is strictly nilpotent on the twisted fields.

3. Lattice Construction of 5D MSYM

It is straightforward to discretize the five-dimensional MSYM theory once the action is written
in the twisted form. One has to address several technicalities once the theory is formulated on the
lattice. The lattice construction is provided in detail in Ref. [13]. We consider a hypercubic lattice
made out of unit cells containing five mutually orthogonal basis vectors µ̂m in the positive xm

directions

µ̂1 = (1,0,0,0,0), µ̂2 = (0,1,0,0,0), µ̂3 = (0,0,1,0,0),

µ̂4 = (0,0,0,1,0), µ̂5 = (0,0,0,0,1).

In the bosonic sector, this theory has only a complexified vector field with five components.
The complex continuum gauge fields Am, m = 1, · · · ,5, are mapped to complexified Wilson gauge
links Um(n) and they are placed on the links connecting lattice site n to site n+ µ̂m of the hyper-
cubic lattice. The field U m(n) is placed on the oppositely oriented link, that is, from site n+ µ̂m

to site n. The complexified field strength is defined in the following way on the lattice

Fmn(n)≡D
(+)
m Un(n) = Um(n)Un(n+ µ̂m)−Un(n)Um(n+ µ̂n). (3.1)

We map the complexified covariant derivative Dm into a forward or backward lattice covariant
difference operator, D

(+)
m or D

(−)
m . The discretization rules appropriate for twisted supersymmetric

gauge theories are derived in Ref. [14].
The Grassmann-odd fields of the twisted theory have the interpretation as geometric fermions

[15]. Since the fermions of the twisted theory are p-forms (p = 0,1,2), it is natural to place each of
them on the p-cell of the five-dimensional hypercubic lattice.

The nilpotent scalar supersymmetry charge acts on the lattice fields in the following way

QUm(n) = ψm(n), QU m(n) = 0, Qψm(n) = 0,

Qη(n) = d(n), Qd(n) = 0, Qχmn(n) =−i
(
D

(+)
m U n(n)

)
=−iF

L
mn.

We need to ensure that the placements of the fields on the hypercubic lattice results in a gauge
invariant lattice action. The mappings and orientations of the lattice variables can be easily summa-
rized by providing their gauge transformation properties on the lattice. For g(n), a unitary matrix
at lattice site n, which is an element of the gauge group G, we have the gauge transformations on
the lattice fields

Um(n)→ g(n)Um(n)g†(n+ µ̂m), U m(n)→ g(n+ µ̂m)U m(n)g†(n),

η(n)→ g(n)η(n)g†(n), ψm(n)→ g(n)ψm(n)g†(n+ µ̂m), (3.2)

χmn(n)→ g(n+ µ̂m + µ̂n)χmn(n)g†(n).

3
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It is clear from above that the gauge transformations depend on the geometric nature of the
lattice fields we are considering.

The covariant forward and backward difference operators act on the lattice fields the following
way [14]

D
(+)
m f (n) = Um(n) f (n+ µ̂m)− f (n)Um(n), (3.3)

D
(+)
m fn(n) = Um(n) fn(n+ µ̂m)− fn(n)Um(n+ µ̂n), (3.4)

D
(−)
m fm(n) = fm(n)U m(n)−U m(n− µ̂m) fm(n− µ̂m), (3.5)

D
(+)
c fmn(n) = fmn(n+ µ̂c)U c(n)−U c(n+ µ̂m + µ̂n) fmn(n). (3.6)

It is now straightforward to write down the lattice action of the five-dimensional MSYM. After
integrating out the auxiliary field d using its equation of motion

d(n) =− i
2 ∑

m
D

(−)
m Um(n), (3.7)

the Q-exact piece of the action takes the following form

SQ−exact = β ∑
n,m,n

Tr
(
− 1

4
F

L
mn(n)Fmn(n)−

1
8

(
D

(−)
m Um(n)

)2

−iχmn(n)D
(+)
m ψn(n)− iη(n)D (−)

m ψm(n)
)
, (3.8)

with β denoting the lattice coupling. In terms of the ‘t Hooft coupling λ and lattice spacing a it is

β =
N
λ
, λ =

Ng2
5

a
. (3.9)

Following the set of prescriptions given in Eq. (3.2) we see that the Q-exact piece of the action
is gauge invariant; each term forms a closed loop on the lattice. The Q-closed term needs special
consideration. It must be modified on the lattice in order to maintain gauge invariance. In order to
make it gauge invariant we introduce the ordered product of link variables along a path connecting
lattice sites n and n+ µ̂m+ µ̂n+ µ̂c+ µ̂d + µ̂e [13]. Let CL be a path on the lattice connecting these
two sites. Then the path ordered link (POL) is defined as

PPOL ≡ ∏
l∈CL

U l, (3.10)

with U l denoting a link variable on CL. We choose U -fields to form the path ordered link since
it is trivially annihilated by Q-supersymmetry. If one chooses to form the path ordered link using
U -fields the term becomes gauge invariant but it breaks the most important property of the lattice
theory, that is, Q-symmetry at the lattice level.

The Q-closed term on the lattice now takes the following gauge invariant form

SQ−closed = − iβ
8 ∑

n,m,n,c,d,e
Tr εmncdePPOLχde(n+ µ̂m + µ̂n + µ̂c)D

(+)
c χmn(n). (3.11)

We also note that the above Q-closed term reduces to its continuum counterpart in the naive
continuum limit in which the gauge links are set to unity.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
2
2
0

5D Maximally Supersymmetric Yang-Mills on the Lattice Anosh Joseph

The lattice action constructed here is invariant under Q-supersymmetry. The Q-variation of
the Q-exact term vanishes due to the property Q2 = 0. The Q-closed term vanishes due to Bianchi
identity for covariant derivatives on the lattice

εdecmnD
(+)
c F

L
mn = 0, (3.12)

with d,e = 1, · · · ,5. It can also be shown that the lattice theory constructed here is free from
spectrum doublers [13] using the tools developed in Ref. [16].

4. Discussion and Conclusions

We have constructed a supersymmetric lattice action of the five-dimensional MSYM theory
using the methods of topological twisting and geometric discretization. The lattice theory pre-
serves one supersymmetry charge exact at finite lattice spacing. The covariant derivatives of the
continuum theory are mapped to forward and backward covariant difference operators through a
well defined prescription. The lattice theory is supersymmetric, gauge invariant and free from
spectrum doublers.

The lattice formulation proposed here can be used to explore the non-perturbative regime of
MSYM theories in five dimensions at finite gauge coupling and number of colors, and also its
parent theory, (2,0) superconformal theory in six dimensions. It would be interesting to find a
nontrivial UV fixed point from the lattice theory for 5D MSYM since the fixed point can give a UV
completion and non-perturbative definition of the theory.

The theory described here takes part in the AdS-CFT correspondence. It is the low energy
theory living on a stack of D4 branes. The gravitational dual of this theory is known; it is the
supergravity on the near horizon geometry of D4 branes.
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Council under the European Union’s Seventh Framework Programme (FP7/2007-2013), ERC grant
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