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1. Introduction

The construction of a theory of quantum gravity is an outstanding theoretical problem. The
gauge-gravity duality conjecture is the notion that gravity is exactly equivalent to a gauge theory.
If true, it would provide a path by which to define quantum gravity nonperturbatively.

The duality connects strong and weak couplings—strongly coupled gravity corresponds to
weakly coupled gauge theory and vice versa—and thus, if true, provides a useful tool by which
we can further our knowledge of nonperturbative regimes via perturbative calculations on the other
side of the duality. Probably the most famous example is the KSS result[4], which gives a nontrivial
result for η/s in a strongly-coupled conformal theory by an easy gravity calculation.

However, the duality is currently still a conjecture, albeit well-motivated and well-supported.
It is therefore useful to test the correspondence by computing related nontrivial quantities on both
sides of the duality and comparing. One may find a mismatch, which would serve as a counterex-
ample and falsify the conjecture. Performing such a test is not trivial, because it is typically beyond
our ability to compute quantities on both sides of the duality, as strong coupling is a hindrance to
analytic results.

However, lattice methods can give us access to nonperturbative physics on the gauge-theory
side. At strong gauge coupling, the gravity side will be analytically tractable, and we can have
reliable independent results that can be compared. Thus, lattice techniques provide a route for
testing the duality.

The standard lore is that weakly-coupled semiclassical (super)gravity corresponds to the large-
N strong-coupling limit of the gauge theory. Moving away from the strong-coupling limit intro-
duces classical stringy corrections (finite string length effects) on the gravity side, and moving
away from large-N introduces quantum string loop effects. We can control N, the rank of the gauge
group, and the coupling in our lattice calculations and gain access to these corrections.

There are a variety of approaches to studying this duality. Dimensionally reducing N =1
super-Yang–Mills (SYM) in 10D yields (p+1)D maximally supersymmetric YM, which should be
dual to type II string theory about a black p-brane background [5]. Reducing to 0 spatial dimensions
yields maximally-supersymmetric D0-brane quantum mechanics (D0QM)[5, 6, 7, 8], or the BFSS
Matrix Model, after Banks, Fischler, Shenker, and Susskind. We study D0QM nonperturbatively
with the hope of comparing with known stringy results.

In particular, type IIA superstring theory makes definite predictions for the internal energy E
of a black hole as a function of temperature,[5]

E
N2 =

E0(T )
N0 +

E1(T )
N2 +O

(
1

N4

)
(1.1)

E0(T ) = a0T 2.8 +a1T 4.6 +a2T 5.8 + · · · (1.2)

E1(T ) = b0T 0.4 +b1T 2.2 + · · · (1.3)

where T is the dimensionless temperature λ−1/3T where λ = g2
Y MN is the dimensionful ’t Hooft

coupling. The regime we study is the ’t Hooft limit—N→ ∞ with λ−1/3T fixed, where E ∼ N2—
where according to the conjecture the internal energy of a bunch of D0 branes should agree with
the black 0-brane mass given by (1.1). SUGRA yields an exact value for a0 which numerically is
7.41. Matching to effective field theory also gives a value for b0, −5.77 [9].
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We can try to verify these values, as well as the powers of the dimensionless temperature.
Our results reproduce a0 with good precision, b0 with large errors, and coefficients subleading
in T which are unknown on the gravity side. We can also try to reproduce the exponent of the
subleading-in-T terms—that is, 4.6 and 5.8 for E0, which we can do with some success, though
mild assumptions from the gravity side are needed. The extraction of the leading power of E0, 2.8,
from the gauge-theory side remains an outstanding challenge for the future.

2. D0 Brane Quantum Mechanics

D0-brane quantum mechanics is a maximally supersymmetric 0+1D gauge theory given by

L =
1

2g2
Y M

Tr
{
(DtXM)2 +[XM,X ′M]2 + iψ̄γ

10Dtψ + ψ̄
α

γ
M[XM,ψ]

}
(2.1)

where M runs from 1 to 9 and α from 1 to 16. The bosonic matrices X and fermionic matrices ψ

are N×N and live in the adjoint so that Dt ·= ∂t ·−i[At , ·].
This theory has an obvious nonperturbative definition—a lattice formulation—and is quantum

mechanical, so that it is unitary by construction.
A black 0-brane (referred to as a black hole when there is no risk of confusion) in this theory

is a set of generic, nonperturbative matrices X . The physical picture is that the eigenvalues of those
matrices are the coördinates of the D0 branes, while the off-diagonal elements correspond to the
stringy connections between the D0s[6].

Because the potential term is proportional to [XM,X ′M]2, sets of block-diagonal matrices cor-
respond to decoupled systems. These flat directions persist quantum mechanically, so at large N
this theory appears to be a second quantized theory[7]—one can independently create an arbitrarty
number of distinct systems and then subsequently allow them to interact. So, one can describe, for
example, two black holes by partitioning X into two, or one black hole and one D0 of radiation.

If this bunch of interacting D0-branes is really dual to a black hole, it must evaporate. Such
a bunch has been known to be unstable for many years[10]. Recently, it has been shown that its
evaporation has negative specific heat—just like a real black hole [11, 12]. However, from a more
pragmatic point of view, this raises a question: can we reliably study a metastable state via Monte
Carlo calculations? The answer is yes—the physical evaporation timescale and the Monte Carlo
timescale for finding a instability can both be derived from phase-space arguments and can be seen
to be exponentially large in N. Thus, we can stabilize the simulation by taking N large enough
unless we are exponentially unlucky. This allows us to guarantee that we land in the right phase,
which is not guaranteed if one introduces a stabilizing mass deformation.

3. Lattice Calculation

Taking N to be large is crucial for physical and numerical stability, but is also important for
performing the desired test of duality—the supergravity results only strictly hold in the large-N
limit (though the form of the 1/N corrections is known) around the background which corresponds
to a single bunch of eigenvalues. Finally, to compare our gauge theory calculations with SUGRA it
is crucial to extrapolate our lattice results to the continuum limit, for the duality is between the two
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continuum theories. No previous work handled both of these systematic concerns. Additionally,
previous work [13, 14, 15, 16, 17, 18, 19, 20] was unable to fit the leading coefficient a0, but instead
set it to its known value of 7.41 and fit the subleading behavior. Our calculation properly controls
the large-N and continuum extrapolations, and yields precise enough values to fit a0.

The details of our discretization and ensembles are described in detail in Ref. [2]. Numerically,
D0-brane quantum mechanics is nice, because it has a dimensionful coupling ’t Hooft coupling λ

and no other dimensionful quantities, so scale setting is quite easy and there are no fine-tunings.
Furthermore, having only 1 spacetime dimension renders the computation relatively cheap.

We run each Monte Carlo ensemble for many thousands of steps, and can perform reliable
estimates of all observables. We found that very large statistics was required for a stable fit—not
due to thermalization, but because there can be long-lived fluctuations that can bias the mean if the
Monte Carlo sample is too small.
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Figure 1: Left: A simultaneous extrapolation in N and L (colored lines and bands, and the black diamond)
for T = 0.5 compared to extrapolation in N (dashed line with dotted band, and the black circle) following
extrapolation in L (black points at finite N). Right: the same simultaneous surface of extrapolation, showing
the quadratic dependence on L−1. The black line and band are the large-N limit at finite lattice spacings.

To reach the continuum large-N result, we tried two approaches. First, we took independent
continuum limits for each N we studied, and subsequently took the large-N extrapolation of those
results. The only pitfall of this procedure is that for a successful linear extrapolation, one must
make sure to be in the region of lattice spacing where O(a2) effects are negligible. The linear
extrapolation of coarse lattice spacings can deceptively appear reliable: going to finer spacings
shows a dramatic departure and that the coarse lattices have important effects second-order in the
lattice spacing. To avoid this potential issue we perform a quadratic extrapolation to the continuum.
This two-step extrapolation performs acceptably, but not as well as a simultaneous extrapolation in
lattice spacing and N.

For a given temperature we can adjust N and L (the number of lattice sites, which is like the
inverse of the lattice spacing) independently, and fit simultaneously to

E
N2 = e00 +

e01

L
+

e02

L2 +
e10

N2 (3.1)

which, incorporating both the quadratic lattice spacing effects and the leading large-N correction,
allows us to cleanly fit all of our measured values for E/N2. This procedure reliably produces the
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same central value with smaller error bars, as shown in Fig. 1. At a given temperature, the resulting
continuum values e00 and e10 are the respective values of the functions E0(T ) and E1(T ). So, we
can constrain both the leading-in-N behavior and the first correction.

4. D0-Brane Quantum Mechanics and Supergravity Agree

With reliable fits determining the continuum values e00 and e10 across a range of temperatures,
we can test to see if the functions E0(T ) and E1(T ) determined from gauge theory match what is
known from the gravity side.

Figure 2: Our values of e00 and fits for different forms of E0(T ). Left: fits of coefficients only. Right: fits
that fix the leading term and determine the subleading coefficents and powers. For comparison we show
results from Refs. [17] and [19]. The solid black line is the SUGRA result.

In Fig. 2 we show our lattice determination of e00 and a variety of fits. We performed two
different kinds of test. First, assuming the known form of E0(T ) we fit the coefficients ai. We
find that over the temperature range of our data care is needed to ensure there is no systematic
tension distorting the coefficients—to incorporate all of our points at least three terms are needed.
But, once this is handled, we get a very good, reliable fit—a0 = 7.4± 0.5, a1 = −9.7± 2.2, and
a2 = 5.6± 1.8 with a χ2/DOF= 2.6/3. This fit is shown in blue in the left panel of Fig. 2. That
we recover the correct value of a0 is nontrivial—it could have differed from the SUGRA value of
7.41 and falsified the correspondence. We also find a1 to be compatible with the result from [17].

In the right panel we show a test of a different sort. Instead of assuming the form of E0(T )
is correct, we assume only the leading behavior and try to fit both the coefficients and powers of
the subleading terms, as is done in eg. [17, 19]. Knowing that our data spans a temperature range
where the third term is important means that we should not expect a fit with only one subleading
term to succeed. Indeed, if we fit the form 7.41T 2.8 + a1T p1 + a2T p1+1.2 we find p1 = 4.6± 0.3,
a1 =−10.2±2.4, and a2 = 6.2±2.6 with χ2/DOF= 2.6/3. It is comforting that this determination
of a1 and a2 is nicely compatible with our other determination. It would be preferable to not
incorporate knowledge of the gravity side by assuming that the exponent of the third term p2 was
p1 + 1.2, but without this assumption one finds a degenerate best fit of p1 = p2 6= 4.6. A reliable
independent determination would require additional data points at low temperature where T 4.6 and
T 5.8 differed noticeably.
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Of course, the ultimate goal is to check that the gauge theory reproduces the SUGRA result
7.41T 2.8 with no assumptions from gravity. While we have shown that the gauge theory indeed
produces a0≈ 7.41, this demonstration relied on knowing the power 2.8. A complete demonstration
without this assumption remains an outstanding problem.

We have access to more than just the leading-in-N behavior, however. In fact, we can make
a comparable test at O(N−2), as the low-temperature behavior there is known as well and our
calculation yields values for E1(T ) via the fit parameter e10.
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Figure 3: Our values for e10 and two fits, as well as the low-temperature stringy prediction.

We show the results of trying to fit the coefficients only, assuming the polynomial form. We
find b0 = −5.8± 3.0, compatible with the known value of −5.77, and loosely constrain b1 =

−3.4± 5.7. Clearly, additional precision is needed to make a stringent comparison or to make
a prediction for the analytic result on the gravity side. Nevertheless, the agreement between our
value of b0 and the known gravity-side result is encouraging, and jibes with previous continuum
low-temperature small-N results[19].

5. Conclusions and Outlook

By performing a strong-coupling, nonperturbative lattice calculation of D0-brane quantum
mechanics, we can try to test the conjectured equivalence of gauge theory and gravity.

At leading order in N, the equivalence passes the test—the continuum gauge theory pro-
duces the same behavior as SUGRA. This conclusion relies on knowledge of the temperature
dependence—removing the final assumption that at low temperature the black hole internal energy
scales like T 2.8 remains an open challenge. Continuum knowledge of corrections in N remains too
imprecise to draw a strong conclusion.

Further questions remain. Can we verify emergent spacetime far from the eigenvalue bunch?
Can we reach the low-temperature limit and see massless Hawking radiation in a near-thermal
spectrum? Does the black hole have a firewall? Exciting horizons lie ahead.
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