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The most computationally demanding part of Lattice QCD simulations is solving quark prop-
agators. Quark propagators are typically obtained with a linear equation solver utilizing HPC
machines. The CCS QCD Benchmark is a benchmark program solving the Wilson-Clover quark
propagator, and is developed at the Center for Computational Sciences (CCS), University of
Tsukuba. We optimized the benchmark program for a Intel R© Xeon PhiTM (Knights Corner, KNC)
system named “COMA (PACS-IX)” at CCS Tsukuba under the Intel Parallel Computing Center
program. A single precision BiCGStab solver with the overlapped Restricted Additive Schwarz
(RAS) preconditioner was implemented using SIMD intrinsics, OpenMP and MPI in the offload
mode. With the reverse-offloading technique, we could reduce the communication and offload-
ing overheads. We observed a performance of ∼ 200 GFlops sustained for the Wilson-Clover
hopping matrix multiplication on the lattice sizes larger than 243 × 32 on a sinlge card of the
COMA system. A good weak scaling perofmace was observed on the local lattice sizes larger
than 243 ×32.
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1. Introduction

The success of Lattice QCD simulations owes much to the development of numerical algo-
rithms and optimization for the quark solver, and evolution of HPC machines. We have developed
a quark solver benchmark program called “CCS QCD Benchmark” (CCS-QCD) [1], which solves
the Wilson-Clover quark propagator, at the Center for Computational Sciences (CCS), University
of Tsukuba. This is designed to be as simple as possible and is written in plain Fortran 90 so that
new algorithms or new HPC architectures can be evaluated quickly with this benchmark program.

A new architecture system equipped with the Intel R© Xeon PhiTM (Knights Corner, KNC)
co-processor cards has been installed at CCS in 2014. The name of the system is “COMA (PACS-
IX)” [2]. This is the ninth system of the PACS/PAX series [3]. The Intel R© Xeon PhiTM (Knights
Corner, KNC) co-processor cards is based on the Intel Many Integrated CoreTM(MIC) architec-
ture, and has many physical cores compatible to x86-64 on a chip. Although the programming
model is common to x86-64 based systems, it requires some tuning tips to fully extract the many
core performance. The communication among the co-processor cards requires HOST-HOST and
HOST-KNC communication like GPGPU computing. There have been a lot of studies on the QCD
program for KNC systems in the past few years [4, 5]. We optimize the CCS-QCD program for
the COMA system to extract the best performance. The basic strategy to optimize the CCS-QCD
program for the KNC system, such as prefetching, threading, SIMD-vectorization etc., is almost
the same as those studied in Refs. [4, 5]. This year a first result using the next generation Intel R©

Xeon PhiTM system (Knights Landing, KNL) has been presented in this conference [6]. In this
talk, we especially focus on the parallel performance of the CCS-QCD on the COMA system.

There are three running modes for a typical KNC system in executing a MPI program; “na-
tive”, “symmetric”, and “offload modes”. We employ the “offload mode” for the CCS-QCD to
utilize the single precision acceleration to the solver algorithm, where the single precision solver
is added and involved as the preconditioner to the double precision solver. The directive based
programming is available as the Language Extensions for Offload (LEO) in the Intel R© compiler.
The total amount of the code modification on the original code is minimized by offloading the
single precision solver to the accelerator. The performance of the whole program relies on the
performance of the single precision solver added.

To have the best performance, together with the tuning and the optimization for the compu-
tational part on the co-processor, the MPI communication among the co-processor cards in the
offload mode must be considered as the MPI functions cannot be used in offload regions. Typically
the MPI functions and manipulating data are handled by the host CPU code in the offload mode.
The data transfer from a host CPU to the co-processor on the host and vice versa can be done only
at the beginning or end of the offload region using the directive. The MPI communication splits
the entire solver code into many parts of the offload regions. The offloading overhead could be a
bottleneck of the performance.

To get rid of the limitation in the offload mode and reduce the offloading overhead, we im-
plement a proxy server code running on the host CPU which handles the request of the MPI-
communication from the offload region. The communication between the host proxy and the of-
floaded code on the KNC is done via the Symmetric Communications InterFace (SCIF) [7]. With
the proxy code, the entire code of the single precision solver can be packed in a single offload
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region and the MPI requests are reversely offloaded to the host proxy. This strategy is called
reverse-offloading. The proxy and reverse-offloding have been introduced in Ref. [4]. This strat-
egy also enables us to apply the communication-computation overlapping. The single precision
solver is programmed in this way. The tuned code for the COMA system is also available at [1].

This paper is organized as follows. In the next section, we mainly describe the details of
the reverse-offloading and the communication-computation overlapping. In section 3 we show the
performance of the code and summarize this paper.

2. Tuning the CCS-QCD for the COMA system

The COMA system is composed of 393 computational nodes equipped with two CPUs (Intel R©

Xeon E5-2680v2) and two Xeon PhiTM 7110P co-processor (KNC) cards. All the nodes are
connected by full-bisection bandwidth of Fat-Tree network of InfiniBand FDR. The theoretical
peak performance is 1.001 PFlops including 157.2 TFlops of CPUs. Making a full use of the
co-processors (84% of the system peak) is inevitable to get the best performance of the system.

The CCS QCD Benchmark (CCS-QCD) implements the BiCGStab solver algorithm for the
even-odd site preconditioned Wilson-Clover quark matrix in double precision. The code is written
in Fortran 90 Language and parallelized in the X , Y , and Z directions using MPI. We replace
the double precision BiCGStab solver algorithm to the double precision flexible BiCGStab solver
algorithm [8]. We add a single precision BiCGStab solver, to be offloaded to the co-processor, as
the preconditioner to the flexible BiCGStab. Hereafter, we refer to the single precision BiCGStab
solver as the solver for simplicity, and we focus on the solver performance.

The single precision solver is further preconditioned with the even-odd site and the overlapped
Restricted Additive Schwarz (RAS) preconditioning [9]. The solver is written in the C/C++ lan-
guage to make use of the SIMD intrinsic functions of the Intel C/C++ compiler. The SIMD length
is 16 for float and we embed four time slices of the spinor and gauge link fields into a SIMD vector
(__m512); four time slices of a two-component spinor at a color index, and four time slices of first
two column elements of a SU(3) matrix at a row-color index. The so-called SU(3)-reconstruction
technique is employed. The many cores of the Xeon PhiTM are organized by OpenMP parallel
threading. Loop blocking on the lattice sites and explicit prefetching is employed to enhance the
use of the cache locality in a physical core. We use one co-processor within a MPI process. Thus
two MPI processes are located on the COMA node. The co-processor identifier (0 or 1) is assigned
to the MPI process according to the even/odd-ness of the MPI RANK.

2.1 Reverse-offloading

The reverse offloading [4] is implemented as follows. The solver code to be offloaded is
essentially the same as that in the native mode except for the MPI communication part. Instead
of calling the MPI APIs, the solver code calls wrapper functions similar to the MPI, in which the
communication requests from the KNC are translated into the MPI-requests, and they are reversely
offloaded to the proxy on the host CPU via SCIF. We refer to this communication API as SCIF
simply.

To launch the solver to the co-processor and the proxy server on the host CPU simultaneously,
asynchronous offloading is used. Figure 1 shows the code snippet launching the single precision
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1 extern ‘‘C’’ void
2 assign_inv_mult_offl_ras_solver( const float *kappa,
3 const float *stol,
4 int *iter,
5 const mic_wqf_eo *swe,
6 mic_wqf_eo *sve)
7 {
8 int offload_signal = 0xF;
9 const float skappa1 = *kappa;

10 const float stol1 = *stol;
11 int iter1 = *iter;
12
13 ////////////////////////////////////////////////////////////////////////
14 // Asynchronous offloading of native code
15 // proxy server is running parallel to the native code.
16 ////////////////////////////////////////////////////////////////////////
17 static mic_wqf_eo *swe1, *sve1;
18 if (swe1 == 0)
19 {
20 #pragma offload target(mic:mic_targetid) \
21 nocopy(swe1[0:1] : alloc_if(1) free_if(0) preallocated targetptr) \
22 nocopy(sve1[0:1] : alloc_if(1) free_if(0) preallocated targetptr)
23 {
24 swe1 = (mic_wqf_eo *)_mm_malloc(sizeof(mic_wqf_eo), 64);
25 sve1 = (mic_wqf_eo *)_mm_malloc(sizeof(mic_wqf_eo), 64);
26 }
27 }
28
29 #pragma offload target(mic:mic_targetid) \
30 nocopy(scif_mic) \
31 in( swe [0:1] : into(swe1[0:1]) alloc_if(0) free_if(0) targetptr) \
32 out(sve1[0:1] : into(sve [0:1]) alloc_if(0) free_if(0) targetptr) \
33 in(skappa1,stol1) \
34 inout(iter1) \
35 signal(offload_signal)
36 {
37
38 assign_inv_mult_eoprec_wd_bicgstab_mic(&skappa1,&stol1,&iter1,sve1,swe1);
39
40 }
41
42 ////////////////////////////////////////////////
43 // process proxy
44 // receive requests from the native code located
45 // in the above offload region.
46 ////////////////////////////////////////////////
47 process_cmds();
48
49 ////////////////////////////////////////////////
50 // wait for finishing of offloading
51 ////////////////////////////////////////////////
52 #pragma offload_wait target(mic:mic_targetid) wait(offload_signal)
53 ....

Figure 1: Offloading part in the host CPU code.

solver and run the proxy asynchronously, where “#pragma offload*” are the directive for
offloading. The schematic diagram of the program behavior is shown in Figure 2.

The input spinor vector memory is allocated on the co-processor in the lines 19–27, where
the pointers swe1 and sve1 are kept on the co-processor across the offload region. In the lines
29–40, the single precision solver is called on the co-processor after the data transmission (copy
in) of the source vector to swe1 of the co-processor memory from swe of the host memory (the
start point of the blue and red horizontal arrows in Figure 2). This offload region is asynchronous
as indicated by the directive signal(offload_signal) and the control is non-blocking over
the host CPU. Then, without waiting for the termination of the offload region, the host CPU calls
process_cmds at the line 47, which is the proxy function, where the MPI requests from the
solver assign_inv_mult_..._mic located at the line 38 are processed (the blue and red
horizontal arrows and the communication arrows between them in Figure 2). When the solver
converges, the solver sends a termination signal to the proxy process_cmds. After receiving
the termination command in the proxy, the control of CPU moves to the line 52, where CPU waits
for the termination signal from the offload region asynchronously emitted in the lines 29–40. This
includes the completion of the data transmission (copy out) of the solution vector to sve of the
host memory from sve1 of the co-processor memory (the end point of the blue and red horizontal
arrows in Figure 2).

2.2 Communication-computation overlapping

Using the reverse-offloading and the SCIF, the co-processor can use the communication func-
tions similar to the non-blocking MPI and DMA transmission functions. With this function, we
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Figure 2: Reverse offloading in the solver.
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Figure 3: Task separation in the hopping matrix multiplication.

implement the communication-computation overlapping in the Wilson-Clover Dirac hopping ma-
trix multiplication (MULT).

The implementation of the communication-computation overlapping for the the Wilson-Clover
Dirac hopping matrix is usually organized by splitting the task into two pieces; (i) the computa-
tion within the node, and (ii) the computation using the data from other nodes. In this case the
conditional branch statements are required to distinguish the site location and the direction of the
hopping operation. To avoid the use of the conditional branch, as the KNC has a rather less per-
formance on the conditional branch, we split the task in slightly different manner as depicted in
Figure 3. The lattice sites in a process are split into the interior sites and the surface sites. In the
“MULT_PRE” the spin-projection and data packing to the send buffer are carried out. After sub-
mitting the MPI request to SCIF in no-blocking way, the hopping computation in the interior sites
continues in “MULT_IN”. In this region there is no conditional branches on the hopping directions.
The communication request is processed on the host CPU during the computation. After receiving
the data from the host CPU, the stencil computation on the surface sites follows in “MULT_PST”.
With the task separation a good performance is expected in “MULT_IN”.

3. Results and Summary

We benchmark the tuned code on the COMA system. The performance of the hopping multi-
plication (MULT) is measured varying the local lattice size and the parallelism.

The single node performance, which is the baseline for the parallel computation, is shown in
Figure 4. In this case there is no task splitting in the MULT computation and periodic boundary

4
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Figure 4: Solver (left) and MULT (right) performance with single process.
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Figure 5: Performance of MULT in weak-scaling test (NS = 12 (left) and NS = 24 (right)).

condition is imposed. Basic optimizations used for KNC systems are applied and we obtain ∼ 200
GFlops for sufficiently larger lattice sizes (> 40000 sites) in a process.

The parallel performance is tested with the weak-scaling benchmarking. We test two local
lattice sizes for the spatial size NS = 12 and 24, and vary the temporal local lattice size. The
parallelisms tested are 1×1×1 (baseline), 2×1×1, 2×2×1, 2×2×2, 4×2×2, and 4×4×2
for the weak-scaling.

Figure 5 shows the performance of MULT. Filled symbols include the communication time of
waiting for receiving data before MULT_PRE, open ones are the timing without the communication
time. For the results with small local volume of NS = 12 (left panel), a large gap between the open
and filled symbols appears for the cases with three-dimensional parallelism. On the other hand,
the performance degradation (open vs filled) is small for sufficiently larger local volume (right
panel). This indicates the communication time is hidden behind the computation time. We need
NS = 24 for the communication hiding. We observe ∼ 190 GFlops for the MULT performance
at the local lattice size 243 × 96. The weak-scaling behavior is good as seen from the cases with
three-dimensional parallel partitioning.

We have implemented the single precision solver code for Intel R© Xeon PhiTM (KNC) and ap-
plied it into the CCS QCD Benchmark. By using the reverse-offloading technique and the SCIF
interface, we have achieved ∼ 190 GFlops for the Wilson-Clover hopping multiplication with a
243 × 96 local lattice size on the COMA system. The next generation Intel R© Xeon PhiTM (KNL)
system named “Oakforest-PACS” will appear soon in the Joint Center for Advanced High Perfor-
mance Computing (JCAHPC) in Japan [10]. It could be interesting to optimize the CCS QCD
Benchmark to the “Oakforest-PACS” system.
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