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1. Introduction

This talk discusses some recent applications of Chiral Perturbation Theory (ChPT) relevant

for lattice QCD. In Sect. 2 we discuss the two-loop finite volume corrections to masses and decay

constants for a large number of cases. The ChPT framework CHIRON that includes most of the

results described in this talk is presented in Sect. 3. The main part is devoted to vector two-point

functions where we discuss results for the disconnected and strange quark contributions and finite

volume corrections at two-loop order including twist effects. The final section discusses recent

work on Kℓ3 form-factors at one-loop order in the twisted, staggered and partially quenched case.

The calculations here assume an infinite time extent and are done in the p-regime, i.e. mπL

not too small and extra zero mode contributions of the pseudo-scalars are not included. The con-

ventions used are Minkowskian.

2. Finite volume: masses and decay constants

The first applications of ChPT to finite volume (FV) were done in [1]. The first two-loop

FV calculations were the mass in the two-flavour case [2] and the vacuum-expectation-value for

3-flavours [3]. Further two-loop progress was delayed until the two-loop sunset-integrals were

worked out for the general mass case [4]. With these, the FV corrections at two-loop order were

done for the two- and three-flavour case [5]. As an example of the type of corrections that were

obtained the relative finite volume corrections for the pion mass is shown in Fig. 1(a). The p6-

correction is of moderate size and the two- and three-flavour result are essentially identical. This

is as expected since for the finite volume corrections the pion-loops are the dominant part by far.

For the kaon mass, Fig. 1(b), the p6 corrections is much larger than the one-loop result. The final

correction is of reasonable size. The reason is that for the kaon mass at one-loop there is no pion

contribution. For the decay constant the same agreement between two- and three-flavour ChPT

exists for the pion and for the kaon the one-loop finite volume correction to the decay-constant is

of normal size since it includes a pion contribution. The figures can be found in [5].

With the full result for the sunset-integrals at finite volume a number of existing calculations at

infinite volume at two-loop order could also be extended to finite volume. The partially quenched

ChPT three-flavour results for masses and decay-constants of [6, 7] were recalculated and extended

to finite volume in [8]. The two-loop results for masses, decay-constants and vacuum-expectation-

values for QCD-like theories [9] were extended to the partially quenched case and to finite volume

in [10]. Plots for a number of relevant cases can be found in those papers.

3. Chiron

The main purpose of doing partially quenched and finite volume two-loop ChPT calculations

is that they can be used by the lattice QCD community. However, the expressions are normally

very long. The numerical programs have been available as a rule from the authors but a more

general numerical framework seemed useful. All results for masses and decay constants at two-

loop order referred to above are available already in the framework CHIRON [11], written in C++.

The library provides a number number of classes for dealing with input parameters and the ChPT

low-energy-constants (LECs). It also contains a large number of examples.
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Figure 1: The relative finite volume corrections for the pion and kaon mass squared.

4. The vector two-point function and HVP

The lowest-order hadronic-vacuum polarization (HVP) contribution to the muon anomalous

magnetic moment was discussed a lot at this conference, an overview can be found in the plenary

talk by H. Wittig [12]. The underlying problem is that one needs values of the two-point function

of electromagnetic currents at low values of q2 of order m2
µ and below at rather high precision.

See e.g. the plot in [13]. Two issues are of importance: the size of the more difficult to calculate

disconnected part and the size of the finite-volume corrections. ChPT can help with both.

4.1 Disconnected and strange quark contributions

The underlying object is the two-point function of vector currents:

Π
µν
ab (q)≡ i

∫

d4xeiq·x〈T ( jµ
a (x) jν†

a (0))
〉

. (4.1)

For HVP we need it with the electromagnetic current with two- or three- flavours of light quarks,

but we also define a number of simpler currents

j
µ
π+ =d̄γµu , jµ

u =ūγµu , j
µ
d =d̄γµd , jµ

s =s̄γµs , jµ
e =

2

3
ūγµu− 1

3
d̄γµd

(

−1

3
s̄γµs

)

. (4.2)

In lattice QCD the two-point functions have two types of contributions: connected or disconnected

shown schematically in Fig. 2. The size of the different contributions has been discussed at one-

loop order in ChPT in [14]. In this talk and [15] we have extended their results to two-loop order

and generalized it in a number of other ways. References to other papers can be found in [12, 15].

We will use two main observations in order to estimate the size of disconnected to connected

contributions. The first is that the singlet vector current does not couple to mesons until rather high

order in ChPT. The coupling starts at p4 via the Wess-Zumino-Witten term but this contributes

only at order p10, the normal coupling starts at order p6 and thus only contributes at order p8. As

a consequence, only direct counter-term contributions are present for the singlet current at order

2
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Connected Disconnected

yellow=lots of quarks/gluons

Figure 2: A schematic drawing of disconnected and connected contributions. The dots are insertions of the

currents and the lines are the valence quarks. The background indicates the sea-quarks and gluons.

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

-0.1 -0.08 -0.06 -0.04 -0.02  0

Π
(1

)
π+ π+ 0

q2

VMD

p4+p6

p4

p6 R

p6 L

(a)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-0.1 -0.08 -0.06 -0.04 -0.02  0

Π
(1

)
ud

0/
Π

(1
)

π+ π+ 0

q2

p4+p6

p4

p6 R

p6 L

(b)

Figure 3: (a) The different contributions to Π̂π+π+(q2), i.e. the connected part. (b) The Ratio of the discon-

nected to connected part for the different contributions but without adding the VMD part to the connected.

p4 and p6. These can change the ratios discussed below. However, a large part of higher loop

corrections will have the same ratio.

For the two-flavour case we have that Π
µν
π+π+ is fully connected, Π

µν
ud only disconnected and

Π
µν
uu is the sum of the two. Since the singlet current does not couple we also have that Π

µν
(u+d)u = 0

for the contributions mentioned above. The disconnected part is thus −1/2 time the connected part

for those contributions. The relation Π
µν
ee = 5

9
Π

µν
π+π+ +

1
9
Π

µν
ud implies that for Π

µν
ee the disconnected

part is −1/10 of the connected part for those contributions.

There are new LECs that have couplings to the singlet current. Using a VMD like estimate we

find that the LEC contributions only contribute to the connected part. These will thus lower the ratio

even further. In infinite volume the two-point functions are given by Π
µν
ab =

(

qµqν −q2gµν
)

Π
(1)
ab

and for HVP Π̂ = Π(1)(q2)−Π(1)(0) is relevant. This is what is plotted in Fig. 3. For the VMD

estimate we use Π
(1)
π+π+ = 4F2

π /(M
2
V −q2). The loop contributions as well as the VMD contributions

for the connected part are shown in Fig. 3(a). The ratio of disconnected to connected is shown in

Fig. 3(b). The pure pion part is exactly −1/2 and kaon and eta loops give only small corrections.

Adding the VMD contributions lowers the ratio significantly as shown in [15].

The same method can be used to calculate the strange quark contribution. Here we find a very

strong cancellation between p4 and p6 contributions. We end up estimating the main part from

φ -exchange. More numerical results and plots can be found in [15]. The partially quenched case

3
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Figure 4: The finite volume contributions with twisted boundary conditions for several components of

Π
µν
π+π+(q). Shown are the partially twisted up quark results to two-loop order. The one-loop result is always

shown as the nearest thin line. The plot is for mπ L= 4. (a) q=
(

0,
√

−q2,0,0
)

(b) q=

(

0,

√
−q2
√

2
,

√
−q2
√

2
,0

)

.

has been done as well [16, 17], allowing to study the disconnected strange quark contributions.

4.2 Twisting

In a finite volume with periodic boundary conditions only discrete momenta pi = 2πni/L with

ni integer are acceptable. Twisted boundary conditions for certain quarks q(xi +L) = eiθ i
q q(xi) al-

low instead for pi = θ i/L+ 2πni/L. Using this a continuous momentum space can be mapped

out. ChPT for these boundary conditions was introduced in [18]. However, this reduces the cubic

symmetry imposed by the cubic box even further. In general one should thus remember to take this

into account, most quantities can depend on all components of the spatial momentum and there are

many more form-factors in general. In addition, charge conjugation involves a change of momen-

tum1. In particular the two-point function Π
µν
a (q)≡ i

∫

d4xeiq·x〈T ( j
µ
a (x) jν†

a (0))
〉

with j
µ
π+ = d̄γµu

satisfies ∂µ

〈

T ( j
µ
π+(x) j

ν†
π+(0))

〉

= δ (4)(x)
〈

d̄γνd− ūγνu
〉

. This leads to the Ward-Takahashi identity

qµ Π
µν
π+ =

〈

ūγµu− d̄γµd
〉

. Because of the twisted boundary conditions the r.h.s. can be nonzero.

Our one- [19] and two-loop results [16, 17] for finite volume with twisted boundary conditions

satisfy the Ward identity. Related discussions at one-loop can be found in [20]. Our main new

result here is that the two-loop corrections for the finite volume corrections are of reasonable size.

The is shown for two different ways of choosing the twist angle in Fig. 4. The plots are shown for

the partially twisted case, i.e. only the valence up quark has a twisted boundary condition. There

is in fact very little numerical difference between the fully twisted, also the sea up-quark twisted,

and the partially twisted case. As one can see, the finite volume corrections for the two different

twists shown in (a) and (b) in Fig. 4, at the same value of q2, are different. This allows for testing

1Note that because adding a constant background field is equivalent to imposing twisted boundary conditions, what

is called momentum is somewhat ambiguous. We always use the above pi = θ i/L+2πni/L.
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the finite volume calculation using the same underlying lattice configurations. Another example is

shown in [16, 17].

5. Kℓ3

The decay K → πℓν is one of the major sources for determining the CKM element |Vus|. To do

this requires knowledge to high precision of the form-factor f+ at q2 = 0. Lattice QCD is now the

most precise way to determine this and one main remaining error is the finite volume correction. As

in the previous section, partial twisting is often employed, here such that the form-factor at q2 = 0

can be calculated directly. The work discussed in this section is in [21, 17].

Earlier ChPT work on Kℓ3 and related form-factors is the original one-loop work [22], the

two-loop work without [23] and with [24] isospin breaking and the one-loop partially quenched

staggered calculation [25]. Earlier work on finite volume corrections is [26].

As in the previous section, finite volume and twisting lead to more form-factors and a different

Ward-Takahashi identity. With the scalar and vector form-factors of K to π transitions defined as

〈π−(p′)|s̄γµu(0)|K0(p)〉= f+(pµ + p′µ)+ f−qµ +hµ , 〈π−(p′)|(ms −mu)s̄u(0)|K0(p)〉=ρ ,

and using q= p− p′ the Ward identity becomes (p2− p′2) f++q2 f−+qµhµ = ρ . Note the presence

of extra terms compared to the infinite volume case in both equations. The split between f+, f−
and hµ is not unique but is useful in presenting results.

In [21, 17] we have calculated the form-factors f+, f−,hµ and ρ in partially quenched, twisted

and staggered ChPT. Our result satisfy the Ward identity analytically and numerically. Formulas,

plots and more numerical results can be found in [21, 17]. Here we show numerical results for the

finite volume corrections corresponding to 2 MILC lattices. The relevant parameters can be found

in the top Tab. 1. The numerical results are shown for all terms in the Ward identity but such that

the f+ term is normalized to one. In Tab. 1 we show results for three different cases: staggered

and partially twisted with an up twist angle the same in the three spatial direction, staggered and

“unstaggered” with a partially twisted up-quark in one spatial direction. Note the different finite

volume corrections for the different twist cases. These can again be used to test the finite volume

corrections using the same underlying lattice configurations.
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