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1. Introduction/Approach

The QCD interaction is flavour-blind. Neglecting electromagnetic and wealatttens, the
only difference between flavours comes from the mass matrix. In this talkamé tev look at how
this constrains meson decay matrix elements onc&fu(B) flavour symmetry is broken, using the
same methods as we used in [1, 2] for hadron masses. In particular ecstsider pseudoscalar
decay matrix elements and give an estimationfipf f; (and fx-/ f+ ignoring electromagnetic
contributions).

In lattice simulations with three dynamical quarks there are many paths to ahpheaphys-
ical point where the quarks take their physical values. The choicetedidyere is to extrapolate
from a point on theSU(3) flavour symmetry line keeping the the singlet quark nTagnstant,
as illustrated in the left panel of Fig. 1, for the case of two mass degerratksm, = my = m.
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Figure 1. LH panel: Sketch of the path for the case of two mass degenqratrksm, = mq = m;, from
a point on theSU(3) flavour symmetric lingmg, mg) to the physical point denoted with*a (m, m{). RH
panel: The pseudoscalar octet meson.

This allows the development of &U(3) flavour symmetry breaking expansion for hadron masses
and matrix elements, i.e. an expansion in

dmy=mg—m, with m=I(my+my+ms),

(where numericallyn = mp). From this definition we have the trivial constraidn, + omy +
oms = 0. The path to the physical quark masses is called the ‘unitary line’ as vemexp the same
masses for the sea and valence quarks. Note also that the expandfmiectg are functions of
monly, which provided we keem = const. reduces the number of allowed expansion coefficients
considerably.

As an example of aBU(3) flavour symmetry breaking expansion, [2], we consider the pseu-
doscalar masses and find to NLO (iG(dmy)?))

M?(ab) = M3 + a(dmg + dmy)
+ Bog (O + OMG + SMTE) + B1(OME + S + B (S — SMp)* + ...

wherem,, m, are quark masses witthb = u,d,s. This describes the physical outer ring of the
pseudoscalar meson octet (the right panel of Fig. 1). Numerically walsarin addition consider
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a fictitious particle, whera = b = s, which we callns. We have further determined the expansion
to NNLO. (Octet baryons also have equivalent expansions.) Theimagsia singlet, so meson to
vacuum matrix element§)| 5|M> are proportional to & 8® 8 tensors, i.e. & 8 matrices, where
0 is an octet operator. So the allowed mass dependence of the outer rindemzg constants is
similar to the allowed dependence of the octet masses. Thus we have

f(ab) = Fo-+G(3ma+ o)
+Hok (3N + 6m§ + 6m) + Hy (SME + 6mg) + Ha(8ma — dmp)? + ...

The SU(3) flavour symmetric breaking expansion has the simple property that foramufi
singlet quantity, which we generically denote Xy= Xs(m, my, ms) then

Xs(M+ &My, M+ dmy, M+ 3ms) = Xs(mM, M, m) + O((3my)?).

This is already encoded in the above pseudos@kB) flavour symmetric breaking expansions,
or more generally it can be shown th&has a stationary point about tB&)(3) flavour symmetric
line. Here we shall consider

X5 = $ (Mg + Mo+ M2 + M7 + M2+ MZ_),
X, = g(fcr + o+ fror + -+ fro+ fi- ).

(The experimental value of;; is ~ 410 MeV, which sets the ‘extrapolation’ range.) There are, of
course, many other possibilities suchSas N, A, Z*, A, p, ro, to, Wo, [1, 2, 3]. As a further check,
it can be shown that this property also holds using chiral perturbatiomthiear example for mass
degenerater andd quark masses and assumigBT is valid in the region of th&U(3) flavour
symmetric quark mass we find

Xi, = fo [1+ (3La+ Ls)X ~3L(X)| +O((3x)?).

0

where the expansion parameter is givendyy = X — x| with Y = %(2)0 + Xs)» Xi = Bomy, Xs =
Boms, where fy is the pion decay constant in the chiral limit, are chiral constants ard x) =
X/ (41fo)? x In(x /A2) is the chiral logarithm.

The unitary range is rather small so we introduce PQ or partially quenchinghe valence
guark masses can be different to the sea quark masses), withousingréeee number of expansion
coefficients. Let us denote the valence quark massgsg, layd the expansion parameterdgg, =
Hg — M. Then we find

M?(ab) = 1+ @ (Spa+ L)
—(2By+ B2) (OME + OMG + 6ME) + Bu(OpZ + SZ) + Bo(Spa — Shp)* + ...,
and

f(ab) = 1+ G(Spa+ Sip)
—(2Hy + o) (8mE + 61§ + 6m8) + Hy(SpZ + S p2) + Ha(Spa — Stp) >+ ...,
where in addition to the PQ generalisation we have also formed the kitiesM?/X2, & = a /M3,

...andf = f/X;,, G=G/Fy, .... This will later prove useful for the numerical results. We see that
there are mixed sea/valence mass terms at NLO (and higher orders)nifdrg limit is recovered

by simply replacin@d pig — omy.
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2. ThelLattice

We use arO(a) NP improved clover action with tree level Symanzik glue and mildly stout
smeared 2- 1 clover fermions, [4], fo3 = 10/g(2, =5.40, 550, 565, 580 (four spacings). We set

I ving Su— e —me <L 1
I"lq - 2 Ke]/a| KOC ’ g g UQ - I"lq - 2 Ke]/al KO .

A k value along theSU(3) symmetric line is denoted bxp, while Ko is the value in the chiral
limit. Note that practically we do not have to determiag, as it cancels idpg. (For simplicity
we have set the lattice spacing to unity.)

We first investigate the constancyXy in the unitary region. In the left hand panel of Fig 2 we
show variousxss. It is apparent that over a large range, starting fronBSte3) flavour symmetric
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Figure2: LH panel:X2, Xz , X3, X2, X§ ~ X2, X1, for (B, ko) = (5.50,0.120900 along them= const. line,
together with constant fits. Open symbols hilst. < 4 and are not included in the fit. The vertical line is the
physical point. RH panel2M2 —M2) /X2 versusM2 /X2, S= N, p, to, Wo for (3, ko) = (5.50,0.120950.
Stars represent the physical points, the dashed line SW8) flavour symmetric line.

line, reaching down and approaching the physical pX{gtappears constant, with very little evi-
dence of curvature. Based on this observation, we determine the pathgodhemass plane by
consideringVi2/X2 against2MZ — M2) /X2. If there is little curvature then we expect that

2M,%—M,%_3x7,%72%
R
holds forS= N, p,to, Wo, . ... Inthe right panel of Fig 2 we show this fG8, ko) = (5.50,0.120950.
We see that this is indeed the caggis adjusted so that the path goes through the physical value.
(For examplef3 = 5.50, kg = 0.120950 is much closer to this path thegi= 0.120900, see [3].)
The programme is thus first to determirgand then find the expansion coefficients. Then

usé isospin symmetric ‘physical’ massés;?, M;;2 to determinedm and dm;. PQ results can
help for the first task. As the range of PQ quark masses that can thesedésumuch larger than

the unitary range, then the numerical determination of the expansion ca@fics improved. In
Fig. 3 we shOV\M% and f againstdpi, + dp. From previous results the LO expansions are just a

IMasses are taken from FLAG3, [5].



Towards a determination ok fr R. Horsley

I . I
6.0 ! 79 ! L
! (BK,) = (5.65,0.122005) o 16 [ ! (Bk;) = (5.65,0.122005)
I . I
50 F ;,
Nl
o
4.0 + o 14 N4
> O /@
e & - - 8
kS &° £ o L a
230¢ 5 2 o2
& o Si12l E
= & ! 00 ©
20 f ! & 1 P mE
. o
-4 .8
[ I
10 [ o o pq data ] 10 | f?f o pq data
o2 o pq data (linear piece) ) 1 o pq data (linear piece)
I I
0.0 E-7Fmm
. 1 . . . . 0.8 bt | . . . .
-0.02 0.00 0.02 0.04 0.06 0.08 0.10 -0.02 0.00 0.02 0.04 0.06 0.08 0.10
B +d4, Y +3l,

Figure 3: LH panel: PQ (and unitary) pseudoscalar mass resultsMdr= M2/X2 with (8,ko) =
(5.65,0.122005 against valence quarlk&., + dp. The data is given by red circles, while subtracting out
the non-linear pieces (using the fit) gives the blue cirdtegether with the linear fit. The vertical dashed line
is the symmetric point, while the horizontal dashed lineespnts the physicafl,*f. RH panel: Similarly
for the decay constant, = f /Xt

function of d 5 + O Up; at higher orders, NLO etc., this is not the case. We see that there is linea
behaviour in the masses at least Kb < 3 orM;; < v/3 x 410MeV~ 700 MeV.
Furthermore the use of PQ results allows for a method for fine tunirg tf be developed. If
we slightly miss the starting point on ti8J(3) flavour symmetric line, we can also turg using
PQ results so that we get the physical values of (84)Xy andMg correct. This givexo, O1",
o . The philosophy is that most change is due to a change in valence quaskratasr than sea
guark mass. Note that the® g, + d s # 0 necessarily (while @m + dmg is always= 0). For our
Ko values this is a rather small change, which we take to be part of the systematidReesently
we use(f3, ko) = (5.40,0.119930, (5.50,0.120950, (5.65,0.122005, (5.80,0.122810, [3].

3. Decay constants

The renormalised an@(a) improved axial current is given by [6]

%‘lab;R — 7 d;b;lmp 7

with
AN = (14 [bam+ 3ba(ma+mp)]) #2°, 30 = AP+ cadyP*,
and
AP =Tayuso. PP =Ta)s0b.
Using the axial current we first define matrix elements
(OlAaIM) =M, (0[aPIM) =M {1,

giving for the renormalised pseudoscalar constants

£ _
fR— Za <l—|—CAf> (1—|— [(bA+ bA)m—i- %bA(ama‘F 5%)]) f.

4
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Figure 4: LH panel: Estimate of thea improvement coefficient using the Schrodinger Functiojddlas a
function ofg3. RH panel: The ratid () / f versusdpa + 1, for (B, ko) = (5.80,0.122810.

As indicated in Fig. 4, we note that is small (compared to unity) and thh&l)/f is constant and
~ O(1). So for constanitnwe can absorb thexf(V /f and(ba 4+ ba)Mterms to give
~ fr ~
R= XE =1+ (G+ 3ba) (dMa+O0my) +... .
Forba (only defined up to terms @(a)) we presently take the tree level vallig,= 1+ O(g3).
As demonstrated in Fig. 3, we expect LO behaviour to dominate in the unitgignreln the
left panel of Fig. 5 we show typical unitary results i@, ko) = (5.80,0.122810 for f= f /X,
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Figure5: LH panel: Unitary results fof = f /X versusdm (filled circles) for(B, ko) = (5.80,0.122810.
The extrapolated values at the physical quark masses ag g#&/open circles. RH panel: The continuum
extrapolation. The extrapolated values are again giverpan oircles. The converted FLAG3 values, [5],
are given as stars.

Finally for our four beta values, we perform the continuum extrapolatisrsh@wn in the right
panel of Fig. 5. For comparison, the FLAG3 values, [5], are shovataas. (Note that although,
helps in determining the expansion coefficients, there is no further informttibe found from
the various extrapolated values.) Convertiggives a result ofk / f; = 1.192(10)(13).

Finally we briefly discus$SU(2) isospin breaking effects. Provid&alis kept constant, then
the SU(3) flavour breaking expansion coefficients, G, . . .) remain unaltered whether we consider
1+1+1 or 2+ 1 flavours. So although our numerical results are for mass degenevadel quarks
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we can use them to discuss isospin breaking effects. We parametersefieess by
fkr Tk
T, (1+2%u2) »

and expanding idkm= (dmyq — dmy,) /2 about the average light quark ma@ss = (dm, + dmy) /2
gives, using the LO expansions (which from Fig. 3 and the LH paneigpfhave been shown to
work quite well)

2 fic) H Am o Am 3 ML -MZ
=z(1-1= . with == K K ,
%u2 = 3 < <fn) ) om’ om  2MZ, —§ (M2, +MZ,)
At the physical poinm*/dny = —0.0393 and hence hetdgy ;) = —0.00422)(2).

4. Conclusions

We have extended our programme of tuning the strange and light quarksradfeir phys-
ical values simultaneously by keeping the average quark mass constanp$eudoscalar meson
masses to pseudoscalar decay constants. As for masses we find tBidf3hélavour symmetry
breaking expansion, or Gell-Mann—Okubo expansion, works wefl avéeading order.
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