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The computation of the form factors for the Bs→ K`ν decay is presented. The b quark is treated
by means of Heavy Quark Effective Theory, currently in the static approximation. In these pro-
ceedings we discuss the extraction of the bare matrix elements from lattice data through a com-
bined fit to two- and three-point correlation functions, as well as by considering suitable ratios.
The different methods agree concerning the extracted form factors and approximately 2% ac-
curacy is reached. The non-perturbative renormalization and matching to QCD is described in
accompanying proceedings [1].
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Extraction of the bare form factors for the semi-leptonic Bs decays M. Koren

1. Introduction: definitions, ensembles, measurements

The QCD matrix elements for the semi-leptonic Bs→ K`ν decay in the rest frame of the Bs

meson are

(2mBs)
−1/2〈K(~pK)|V 0(0)|Bs(0)〉= h‖(EK), (1.1)

(2mBs)
−1/2〈K(~pK)|V k(0)|Bs(0)〉= pk

Kh⊥(EK), (1.2)

where V µ(x) = ψ̄u(x)γµψb(x) and ~pK is the Kaon momentum.
The b quark is treated in the framework of Heavy Quark Effective Theory (HQET) where a

full non-perturbative renormalization program exists [2]. Here we focus on the extraction of the
bare HQET matrix elements from the lattice data, while the procedure to obtain the QCD form
factors from these bare matrix elements is described in [1].

For the heavy quark we use HYP1 and HYP2 discretizations [3]. We first restrict ourselves to
the static approximation. The two- and three-point functions of interest are

C K(tK;~pK) =∑
ti

∑
~x f ,~xi

e−i~pK·(~x f−~xi)〈Psu(~x f , ti + tK)Pus(~xi, ti)〉, (1.3)

C Bs(tBs ;~0) =∑
ti

∑
~x f ,~xi

〈Psb(~x f , ti + tBs)Pbs(~xi, ti)〉, (1.4)

C Bs→K
µ (tK, tBs ;~pK) =∑

ti
∑

~x f ,~xv,~xi

e−i~pK·(~x f−~xv)〈Psu(~x f , ti + tBs + tK)Vµ(~xv, ti + tBs)Pbs(~xi, ti)〉, (1.5)

with Pq1q2(~x, t) = ψ̄q1(~x, t)γ5ψq2(~x, t). For the light quarks we use Wuppertal smearing [4, 5]. The
Kaon correlator is calculated with only one level of smearing, while for the Bs meson we apply three
levels of smearing (in both the two- and three-point functions). We can decompose the Euclidean
correlation functions as

C K(tK) = ∑
m

(κ(m))2e−E(m)
K tK , (1.6)

C Bs
i j (tBs) = ∑

n
β

(n)
i β

(n)
j e−E(n)

Bs tBs , (1.7)

C Bs→K
µ,i (tK, tBs) = ∑

n,m
κ

(m)
ϕ

(m,n)
µ β

(n)
i e−E(m)

K tKe−E(n)
Bs tBs , (1.8)

where the indices m,n label the Kaon and Bs meson energy levels respectively, while the indices i, j
label the smearing levels used for the Bs meson. In our current setup ~pK has a non-zero component
only in the x-direction, therefore we only extract the form factors for µ = 0,1. Thus, the desired
static bare matrix elements are given by

hstat,bare
‖ = ϕ

(0,0)
0

√
2E(0)

K , p1
Khstat,bare
⊥ = ϕ

(0,0)
1

√
2E(0)

K . (1.9)

We use three N f = 2 CLS ensembles [6]: A5, F6, and N6, which have similar pion mass
(mπ =310–340 MeV) but different lattice spacings (a ≈ 0.075, 0.065 and 0.048 fm respectively),
allowing us to take the continuum limit. For further details on the ensembles, see Table 2 of Ref. [7].

We choose |~pK|= 0.535 GeV which corresponds to 2π/L on the N6 lattice. We keep the same
value of ~pK on the other lattices by introducing flavour-twisted boundary conditions [8] for the
strange quark (cf. Ref. [7]).
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Computing all-to-all propagators with a random source on every timeslice (“full time dilu-
tion”) allows us to access all time separations in the two-point and three-point functions. For more
details on the measurements and analysis we refer to the upcoming Ref. [9].

2. Bare form factor extraction by means of a combined fit

Our goal is to extract the form factors by fitting to the three-point correlation function, Eq. (1.8).
We first determine the parameters of the two-point correlation functions, Eqs. (1.6), (1.7), and use
these as fixed input to estimate the form factors ϕµ from a linear fit to Eq. (1.8). We then use all
these parameters as initial values to a “global” combined fit to Eqs. (1.6)–(1.8). We find that in
this way one obtains superior stability of the fit results with respect to small changes of the initial
values and fit ranges.

Our interest is mostly limited to the ground-state form factors ϕ
(0,0)
µ , however we find that for

the safe extraction, free of contamination by the excited states, we need to include more terms in
the sums of Eqs. (1.6)–(1.8). In these proceedings we keep only the Kaon ground state but include
two excited states for the Bs meson.

Clearly, a good choice for the initial values and a careful choice of fit ranges is required to
obtain stable combined fits. Let us briefly describe how this is done in the following subsections.

2.1 Two-point function fits

Eq. (1.6) for the two-point light-light correlator is taken in the limit of infinite T . In practice,
our lattices have finite T and one has to take into account the wrap-around state, giving

C K(t)∼=(κ(0))2(e−E(0)
K t + e−E(0)

K (T−t)), (2.1)

when t and T − t are large enough that we can neglect the contribution of the excited states.
We select the time tK2

min at which we start the fit by choosing the smallest value of t at which
the (fitted) excited-state contribution is smaller than 1/4 of the statistical uncertainty at that value
of t. There is no severe signal-to-noise problem in the Kaon sector, so we always use tK2

max = T/2.
For the two-point heavy-light (Bs) correlator, we have three different smearings. Including the

off-diagonal terms yields six independent correlators in the symmetric C Bs
i j matrix. We first obtain

the energies using GEVP, with t0 = dt/2e (cf. Refs. [10, 5]). Then we determine the amplitudes
in Eq. (1.7) by first doing a linear fit to the diagonal elements of C Bs to find the squares of the
amplitudes and then using these values as input to the non-linear fit for β

(n)
i to all elements of C Bs

i j ,
including the off-diagonal ones.

2.2 Safeguarding from finite-T contributions in C Bs→K

Due to the finite time extent of the lattice, we have to take into account the “wrappers”’ in the
three-point functions – at large enough times C Bs→K

µ,i can be written as a sum of the ground-state
contributions to the two diagrams shown in Fig. 1:

C Bs→K
µ,i (tK, tBs)∼= κ

(0)
ϕ

(0,0)
µ β

(0)
i e−E(0)

Bs tBs e−E(0)
K tK +κ

(0)
ξµ,ie−EB∗ tBs e−E(0)

K (T−tBs−tK), (2.2)
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Figure 1: Physical (left) and wrapper (right) contributions to C Bs→K.

where ξµ,i = 〈0|Vµ |B∗〉〈B∗|Phl|K〉 is the unknown matrix element of the wrapper state and EB∗ is
the energy of the lightest heavy-light state contributing to the wrapper diagram. In the static order
we have EB∗ = E(0)

Bs
, but at NLO it will be different.

To include the wrappers in the fit we need at least six extra parameters ξµ,i. Instead we
choose to exclude these states by restricting the fit region so that their contribution is negligi-
ble. To do that, for every given value of tBs , µ , and i we fit the three point function to the form
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Figure 2: The lines of tK3
max for µ = 0 and µ = 1.

The regions disallowed for the fits (with tK3
min, tB3

min
from [7]) are in gray. The region allowed for µ = 0
but disallowed for µ = 1 is in white-gray stripes.

C Bs→K
µ,i (tK, tBs)∼= Bµ,ie−EK

µ,itK +Cµ,ie+EK
µ,itK ,

(2.3)
with Bµ,i and Cµ,i being linear fit parameters
(which one can express in terms of the ampli-
tudes and matrix elements of Eq. (2.2)) and EK

µ,i

being a non-linear fit parameter. Then we find
tK3
max,wr as the last tK for which the fitted wrapper

contribution to the function is smaller than 1/3
of its statistical uncertainty at that value of tK.
Final tK3

max(tBs) can be chosen as the minimum
of tK3

max,wr(tBs) and tK3
max,noise(tBs), where the lat-

ter excludes the points with a relative statistical
error of C Bs→K(tK, tBs) larger than 0.1.

The resulting tK3
max(tBs) curves for the N6 en-

semble are plotted in Fig. 2. One clearly ob-
serves that the wrapper contamination is more
pronounced for µ = 1.

2.3 Combined fit, stability

Having determined the parameters in Eqs. (1.6), (1.7) and the estimates for the form factors
ϕµ from linear fits to Eq. (1.8), we use them as initial values for the combined non-linear fit, i.e.
we simultaneously fit the three equations for all values of µ and all light-quark smearings for the
Bs meson.

The temporal fit ranges are determined by suitable criteria described above, except for three
minimum times: tB2

min, tB3
min and tK3

min, which in our setup are independent of µ and the smearing level.
They are chosen such that the contributions from the excited states are negligible.

We check that the change of the fit results with respect to variations of the fit ranges is negli-
gible within the statistical errors, plotting the results on the “stability plots”. An example stability
plot for the ground-state matrix elements is presented in Fig. 3.
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Figure 3: Stability of the fit parameters ϕ
(0,0)
0 (left) and ϕ

(0,0)
1 (right) on ensemble N6 (HYP2 discretization)

with respect to variations of tB3
min/a (different groups) and of tK3

min/a = 11 . . .19 (within the groups). In the
plot we fix tB2

min = tB3
min−5a. In each panel, the value used to determine the bare form factor is marked with a

filled square.

3. Bare form factor extraction by the ratio method

To cross-check the results obtained by the combined fit, we use the ratio method. One can
define many different ratios that converge to the desired form factor in the limit of large tK, tBs .
Here, we consider three definitions (τ = tK + tBs):

R I
µ,i(tK, tBs) =

C Bs→K
µ,i (tK, tBs)[

C K(τ)C Bs
ii (τ)

]1/2 e(ẼBs−ẼK)
tBs−tK

2 , (3.1)

R II
µ,i(tK, tBs) =

C Bs→K
µ,i (tK, tBs)[

C K(tK)C Bs
ii (tBs)

]1/2 e ẼBs
tBs

2 +ẼK
tK
2 , (3.2)

R III
µ,i(tK, tBs) =

C Bs→K
µ,i (tK, tBs)

N KC K(tK)N Bs
i C Bs

ii (tBs)
, (3.3)

and restrict ourselves to the highest Bs smearing1, and the case tK = tBs = t.
Ratio R I(t, t) has a particularly simple form and needs no extra parameters – it however comes

at the price of working with C Bs(2t) in the denominator, which results in more noisy behaviour at
large t.

For R II we find that one gets good statistical precision of the results when using ẼK = E(0)
K ,

ẼBs = E(0)
Bs

obtained from the two-point function fits as described in the previous section. Also for

R III we use the fitted amplitudes N K = 1/κ(0) and N Bs
i = 1/β

(0)
i .

The results for the finest lattice spacing are presented in Fig. 4. We see that R II and R III

are nicely consistent with the combined fit results in the vicinity of 0.8fm . t . 1fm. R I
µ=0 has

superior behaviour for small t but R I
µ=1 does not and it becomes very noisy before reaching the

plateau due to the noise in C Bs(2t).

1We also analyzed GEVP ratios, following Refs. [10, 11], but found no significant improvement.
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Figure 4: Different ratios RX
µ,i=3(t, t) for the N6 ensemble (HYP1 discretization): µ = 0 (left) and µ = 1

(right), together with the combined fit results. Results are slightly displaced on the horizontal axis for better
visibility.
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Figure 5: Summed ratios M I
µ,i=3(t, t) for the N6 ensemble (HYP1 discretization): µ = 0 (left) and µ = 1

(right), obtained using two methods described in text. The linear fit is done from τ to τmax = 32a.

Improved convergence for R I can be obtained by summing the ratio [12]:

M I
µ,i(τ) = ∂τ a∑

tBs

R I
µ,i(τ− tBs , tBs). (3.4)

The asymptotic excited-state contaminations are then O(τ∆e−τ∆), where ∆ = min(E(1)
K − E(0)

K ,

E(1)
Bs
−E(0)

Bs
), as opposed to O(e−τ∆/2) in ordinary ratios [11].

In practice, the derivative can be calculated numerically or one can obtain M I
µ from a linear

fit to the sum (setting τmax small enough to avoid the influence of the wrappers). Example results
showing the two methods are presented in Fig. 5. We observe that in fact the convergence is
improved.

4. Conclusions and outlook

We extract the bare matrix elements of the semi-leptonic Bs decay in the static order of HQET.
In this framework, renormalization and matching to QCD can be performed non-perturbatively,
such that the continuum limit can be taken, as described in Refs. [1, 7].
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Our numerical setup allows us to access all time separations in the two-point and three-point
correlation functions of interest, therefore giving us a very good handle on the excited-state and
finite-T contributions.

To extract the matrix elements from the lattice data, we use two different extraction methods:
the combined fit and the ratio method. They give consistent results which makes us confident in
the robustness of the analysis. The precision of our results for the bare matrix elements is approx.
2%. The final resulting precision of the static continuum-extrapolated RGI form factors is better
than 5% [7].

We estimate the systematic error from neglecting the subleading terms in 1/mb to be of order
15%. Therefore, the next step is to include the 1/mb terms, which will reduce this systematic error
to 1–2%. The required set of HQET parameters is being calculated in the parallel effort by the
ALPHA collaboration [13].

We also plan to include ensembles with a smaller pion mass, although we expect the effects of
the quark mass to be below our uncertainties in the case of the Bs→ K`ν decay.
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