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1. Introduction

If one naively selects all the lagrangian terms allowed by symmetries, the QCD lagrangian
should contain a CP-violating term θFF̃ . The absence of experimental evidence for a non-zero θ

has not been theoretically explained yet, and it is called strong CP problem. Several candidates exist
to propose a solution to this problem, from the Peccei-Quinn mechanism to the “trivial” solution
mu = 0. In this work we focus on the latter, arguing that it is not as trivial as it as been thought.

Indeed, it has been previously[1, 2, 3] pointed out that mu = 0 is not renormalisation invariant,
because of non-perturbative contributions. If mu = 0 for one particular scheme at some scale, it
doesn’t mean it will be zero for every scheme, and except for some particular schemes it doesn’t
mean that it will be zero at every scale. Only mu = md = 0 can be called physical, because it
corresponds to a massless pion.

In the past years, several lattice groups have estimated the quark masses at high precision in
massless renormalisation schemes at perturbative scales, strongly excluding mu(MS) = 0. There
the mass running is multiplicative and asymptotically universal, so that if mu were zero at some high
energy scale it would be approximatively zero at other high energy scales as well. On the other
hand, in instanton computation the quark masses typically appear renormalised at low energy, so
that the MS results are of limited use.

2. Zero up mass or zero topological susceptibility?

The idea of the mu = 0 solution of the CP problem is that a θFF̃ term can be absorbed by a
chiral rotation and is equivalent to putting a complex phase to mu. Then, if mu = 0, θ becomes
irrelevant since mueiθ = 0 for any θ .

If we start from χt = 0, where χt = ∑〈(FF̃)(x)(FF̃)(0)〉/V is the topological susceptibility,
we arrive to the same conclusion. Indeed it would impose that for every configuration we have the
topological charge Q = 0, and then the reweighting factor eiθQ from θ = 0 vacuum to arbitrary θ

would be 1 for any θ .
Those two things are equivalent at leading order in ChPT since χt ∼ Σmu. However, it has been

known that the definition of mu is ambiguous at next to leading order[7]. The fact that χt(mu =

0,md = 0) = 0 has also been checked empirically in full QCD on the lattice[4], and in that case it
makes sense that the massless pion allows to reproduce the ChPT result. But it is not clear whether
the lattice results of full QCD respect χt(mu = 0) = 0 when up and down quark masses are not
degenerate. It certainly depends on how we regularise the theory non-perturbatively and how we
define the quark masses.

A crucial difference between those two approaches is that χt is a physical quantity, while mu

is a non-observable parameter which depends on the renormalisation scheme. It then appears that
the “mu = 0 solution to the CP problem” would probably have been better expressed as a “χt = 0
solution to the CP problem”1, and that latticists could focus on whether χt = 0 instead of focusing
on a scheme-dependent quantity which is actually more difficult to obtain.

1The axion solution also provides χt = 0, but here we are interested in whether χt = 0 can be realised within QCD
alone, under the constraint of reproducing the hadron spectrum
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3. Renormalisation mixing and Ward identities

The fact that the mass operator and the FF̃ operator mix is obvious in the singlet Axial Ward
identity. This also put constraints relating the mass operator, the additive mass renormalisation
and the FF̃ operator. Then taking an arbitrary definition for each term is likely to break the Ward
identity, if the observables are not explicitely defined from it[5].

Since FF̃ is related to instantons, it is natural to expect that the ’t Hooft vertex could play a
role in this mixing. In Nf = 1 the t’ Hooft vertex would be a two leg vertex giving a O(ΛQCD)

contribution. For larger Nf the t’Hooft vertex has 2Nf legs, of which the 2Nf−2 legs associated to
“heavy” quarks can be contracted with their mass terms so that in Nf = 3 appears a contribution
∆mu = O(mdms

ΛQCD
).

It has been estimated[3] that those corrections could be large at an O(ΛQCD) renormalisa-
tion scale. A subsignificant effect on the lattice results for mu(MS,3 GeV) could become a large
(scheme-dependent) effect at low-energy scales.

Therefore, the question of whether χt(mu = 0) cancels could be dramatically affected by the
choice of definition of the quark masses. In particular we are interested in knowing if χt = 0 at
mPCAC

u = 0, since the “PCAC mass” from non-singlet Ward identities is what is used to compute
the MS masses.

4. Comparison of topological charge definitions

As a first step, we focused on understanding the difference between different topological
charge observable definitions. Indeed, just like χt(mu) could depend of the definition of mu it could
depend on the definition of χt . One could in particular expect differences between the fermionic
and bosonic definitions of χt , in particular with lattice actions which don’t satisfy the index theo-
rem. It was also argued that some definitions were more compatible with the Axial Ward identities
than others, which could be important since we’re interested in mPCAC

u .
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Figure 1: Gradient flow evolution with different choices of action, for a small Iwasaki quenched ensemble
with a topology-fixing term in the action. Every line represents a different lattice configuration.

In Fig. 1 we show how gradient-flow definitions with different actions compare, on a ensemble
where the topological charge has already been fixed. This topology fixing uses a fermionic defini-
tion, suppressing zero modes, while the measurement after gradient flow uses a 5Li gluonic defi-
nition. Although the stability of the plateaus depends very much on the choice of flow action, we
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see that the DBW2-flow perfectly agree with the fermionic definition giving Q =−2. As a general
remark, increasing c1 in the action seems to increase both the stability and the convergence speed
(so that the equivalent number of smearing steps is roughly constant, if we use nc = (3− 15c1)τ

from [6]).
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Figure 2: In the left panel we show that topological charge definitions coming from two different actions
seem to completely disagree. For one configuration taken independently there is no asymptotic agreement
between Symanzik flow (square symbol) and Iwasaki flow (cross). However, the right panel, presenting the
same information at fixed flow time in a different way, exhibits a strong correlation between the different
definitions.

In Fig. 2-3 we show other tests to check that all definitions are reasonably equivalent with our
typical range of parameters, at least in the case of quenched approximation or unphysical quark
masses. We hope to eventually compare that to similar tests at near-zero up quark mass.

5. Nf = 1+2 simulation

As we want to highlight the additive mass contribution to mu, we make the choice to generate
Nf = 1+2 ensembles, where the up quark is light but the the down quark is taken degenerate with
the strange and close to the physical strange mass. This will put us close to the Nf = 1 case where
non-perturbative effects are supposed to add an O(ΛQCD) additive contribution to renormalisation,
and this will enhance any term in O(mdms

ΛQCD
).

We use a Lüscher-Weisz gauge action with HEX2-smeared clover fermions. We hereby
present preliminary results for one single coupling β = 3.31 (corresponding to a ∼ 0.116 fm in
the Nf = 2+1 scale-setting) and lattice size 163×32. The down/strange quark mass is kept fixed at
mbare

s =−0.04 while mbare
u varies from −0.07 to −0.1. O(100) configurations have been generated

for each mass.
The PCAC masses are extracted from the heavy-light and heavy-heavy non-singlet Axial Ward

identity and then combined into

mPCAC
u = mPCAC

HL −mPCAC
HH . (5.1)

This is presented in Fig. 4 together with gradient flow definitions of the topological susceptibility.
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Figure 3: For Iwasaki gauge action ensembles where the physical volume and χtV ∼ 13 are kept approxima-
tively constant, we see that the discrepancy between different definitions of the topological charge based on
different flows disappears in the continuum (high β ). c−1 stands for an action with the rectangle coefficient
c1 =−10.
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Figure 4: Topological charge as a function of the up quark PCAC mass, at a fixed volume and lattice spacing.
The “down” and strange mass are keep constant and close to the physical strange mass.
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The topological susceptibility at large quark mass looks more or less flat and is comparable
with the quenched value. For lighter quark masses we see a decrease of the topological susceptibil-
ity, as expected, but those preliminary results do not yet allow to tell whether χt = 0 at mPCAC

u = 0
or not.

6. Conclusion

We have argued that the existing determinations of mu in perturbative or massless schemes
do not allow to properly define and exclude the mu = 0 scenario of the strong CP problem. As of
today, there is no theoretical proof that χt cancels when the PCAC mass does. We have therefore
presented preliminary results for an empirical test of this property on Nf = 1+2 ensembles when
the up and down quarks are non-degenerate.

The results still contain several sources of systematics which are not yet totally under control,
and more ensembles are currently being generated. The continuum limit in particular is going to be
an important ingredient. The statistics will also have to be improved by a large factor, while some
standard analysis methods such as stochastic propagators can be used to improve our determination
of the PCAC mass.

Unfortunately, we have not been able to perform many analysis with a fermionic definition of
the topological charge as a comparison, given the heavy cost of overlap fermions.

However, we have been able to generate configurations very close to mPCAC
u = 0 and do not

have to rely on a long extrapolation, which is quite encouraging. We might even end up interpolat-
ing to mPCAC

u = 0.
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