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1. Introduction

Nonperturbatively regulating chiral gauge theories has been a long-standing problem in quan-
tum field theory. It may be that finding such a regulator reveals no new or unexpected behavior;
however as there is currently no other method for gaining access to the nonperturbative regime, the-
oretical control of the full path integral is necessary for determining the full matter content of chiral
gauge theories. Experimental probes of the Standard Model only provide tests of the weak coupled
regime, via the Electroweak sector, and so only reveal the ingredients necessary for defining these
theories perturbatively. Furthermore, while certain models for Beyond the Standard Model physics
utilize the dynamics of strongly coupled chiral gauge theories, none have been discovered as of yet.
Therefore, our understanding of chiral gauge theories, as derived from experiment, is limited to the
perturbative sector; we must rely on theory to access information about the nonperturbative sector.

Chiral gauge theories have been studied extensively in perturbation theory, particularly as the
existence of a regulator that preserves the non-anomalous chiral Ward identities at a given order
implies that the theory is perturbatively self-consistent. While such studies do not allow us to
determine the complete structure of a theory, they can be used as a guide to determine some of
the necessary properties of the nonperturbatively defined theory. First and foremost, the nonper-
turbative regulator must allow for massless fermions in complex fermion representations in order
to preserve gauge invariance. It is also known that only chiral gauge theories with anomaly-free
fermion representations are self-consistent, as the existence of gauge anomalies results in the loss of
unitarity. This property should persist beyond perturbation theory and therefore the nonperturbative
regulator must somehow fail for anomalous representations. Lastly, the nonperturbative regulator
should reproduce perturbative results for weakly coupled gauge fields such as the ability to couple
only left-handed fermions (in anomaly-free representations) to gauge fields of trivial topology.

Constructing a nonperturbative regulator comes down to the question of how to define the
fermion functional integral, ∆(A)

∆(A)≡
∫

Dψ Dψ̄ e−
∫

d2nx ψ̄Dψ n = 1,2, . . . (1.1)

in an unambiguous way. This can be done for Dirac fermions where the fermion operator is the
Dirac operator /D, which maps from the vector space of left-handed (LH) and right-handed (RH)
fermions to the same vector space. Therefore, the theory has a well-posed eigenvalue problem
and ∆(A) = det( /D). For chiral gauge theories, it seems natural to take D = /DPL, where PL =

(1−Γ2n+1)/2 is the projector onto LH fermions. However, this operator does not have a well-
posed eigenvalue problem as it maps from the vector space of LH fermions to the vector space
of RH fermions. While |∆(A)| for such an operator is completely determined, the phase of ∆(A)
cannot be without additional information [1]. The question of how to nonperturbatively define
chiral gauge theories is the question of how to define D such that it acts on Dirac fermions, as is
necessary to have an eigenvalue equation, while simultaneously reproducing perturbative results.

Given that the only nonperturbative regulator that has been successfully used for non-integrable
QFT is the lattice, it is necessary to ask whether it is possible to define a lattice regularization such
that these requirements are satisfied. Two problems immediately present themselves: the no-go
theorem of Nielsen and Ninomiya [2] and the fact that symmetries cannot be broken anomalously
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Figure 1: Conventional DWF construction,
with light fermions localized at s = 0 and s =
±L and a flat profile for the gauge field A.

Figure 2: Waveguide model where gauge field
is only nonzero near the s = 0 surface.

on the lattice. While these problems have been overcome for vector theories without the introduc-
tion of any new physics below the lattice cutoff scale, it may not be possible to do so for chiral
gauge theories. Therefore, finding a nonperturbative regulator for chiral gauge theory may be more
than a technical question; instead, the regulator itself may hint at new physics hidden within the
Standard Model itself.

2. Vector Gauge Theories on the Lattice

The difficulty in implementing massless fermions on the lattice is due to a no-go theorem that
forbids the existence of a local fermion operator that describes a single massless Dirac fermion
in the continuum while simultaneously preserving all chiral symmetry at finite lattice spacing.
Additionally, while anomalous symmetry violation occurs in the continuum, symmetries on the
lattice cannot be anomalously broken due to the presence of only a finite number of degrees of
freedom. These two problems can be simultaneously overcome in vector theories by realizing
that in order to reproduce the physics of the anomalous violation of U(1)A in the continuum, the
symmetry has to be broken explicitly in the lattice formulation, in keeping with the no-go theorem.
Ginsparg and Wilson argued [3] that for this theory, the fermion operator obeys

Γ2n+1D +DΓ2n+1 = aDΓ2n+1D (2.1)

where a is the lattice spacing. It was later proven that not only does a solution to the Ginsparg-
Wilson (GW) equation correctly reproduce the continuum index theorem, it also obeys an exact
symmetry that ensures multiplicative mass renormalization even at finite lattice spacing [4, 5].

An explicit solution to Eq. 2.1 can be found in the Domain Wall Fermion (DWF) construc-
tion [6], where (2n+1)-dimensional fermions have a mass that depends on the extra dimension

m(s) =

{
−m− s < 0

m+ s > 0
(2.2)

with s = [−L,L] the coordinate of the compact extra dimension and m± is positive. The spectrum
of the theory contains light fermions localized at s = 0 and s = ±L as well as heavy fermions
delocalized into the bulk of the extra dimension. Due to the exponential localization of the light
fermions, their mass goes to zero exponentially fast with the size of the extra dimension. In this
limit, the mode at s = 0 is a LH fermion while the mode at s = ±L is a RH fermion. As any
mass renormalization must be proportional to the overlap of these two modes, multiplicative mass
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renormalization is assured. The heavy fermions remain delocalized, and thus massive. Note that
flipping the sign of both m+ and m− results in RH fermions localized as s = 0 and LH at s = L.

The theory is gauged by coupling the (2n+1)-dimensional fermions to an s-independent 2n-
dimensional gauge field, as shown in Fig. 1. This ensures a vector-like theory, as both LH and
RH fermions couple to the gauge field identically. The explicit violation of U(1)A is due to the
bulk fermions, which have large masses. Integrating out these heavy fermions gives rise to a
Chern-Simons operator. The incomplete decoupling of the heavy modes, called the Callan-Harvey
mechanism [7], allows the U(1)A anomaly to be correctly reproduced at finite lattice spacing.

The fermion functional integral ∆(A) for this construction can be found in two different ways.
The first treats the extra dimension as imaginary time, allowing for a Hamiltonian approach [8, 9].
Taking L→ ∞ corresponds to projecting onto the groundstates of the Hamiltonians

H+ = Γ2n+1 (DW −m+) H− = Γ2n+1 (DW +m−) (2.3)

where DW is the Wilson operator. Therefore the path integral is given by

∆(A) =
〈Ω,+|Ω,−〉〈Ω,−|Ω,+〉
〈Ω,+|Ω,+〉〈Ω,−|Ω,−〉

(2.4)

where |Ω,±〉 are the multiparticle groundstates of H±. The denominator in Eq 2.4 is due to Pauli-
Vilars fields which must be introduced to control divergences resulting from the large number of
heavy bulk fermions, which become infinite in the large L limit. It is clear that there is no phase
ambiguity, as individual phase rotations on the basis vectors of H± do not change the form of ∆(A).

The other method utilizes the slab formulation [10] and treats the discretized extra dimension
as a flavor index. Integrating out the bulk flavors allows for the derivation of the effective operator
of the boundary fermions explicitly [11]:

D
(L)
v = 1+Γ2n+1

1−T L

1+T L (2.5)

where T is the transfer matrix responsible for translations in the extra dimension. Taking the large
L limit, the effective operator becomes

DV = 1+Γ2n+1ε[H+] ε[H]≡ H√
H2

, (2.6)

where ε[H] is a matrix sign function. The determinant of DV and ∆(A) as derived in Eq. 2.4 agree
if m− is taken to infinite. This operator satisfies the GW equation and so violates chiral symmetry
in a minimal way, just enough to reproduce the effects of the U(1)A anomaly.

3. Proposal for Lattice Regulated Chiral Gauge Theories

As the DWF construction gives a method for separating LH from RH fermion, it seems like
a good starting point for implementing chiral gauge theories on the lattice. If the 2n-dimensional
gauge field is given an s-dependent profile, opposite chirality partners have different gauge inter-
actions. A previous proposal, shown in Fig. 2, turned off the gauge field half-way between the two

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
4
0

Continuing the Saga of Fluffy Mirror Fermions Dorota M. Grabowska

Figure 3: Chiral theory construction where
bulk gauge field is solution to gradient flow
equation, flowing smoothly from A to A?

Figure 4: Chiral theory construction where
bulk gauge field flows abruptly from A to A?

boundaries, resulting in the gauge-variant theory. Yukawa couplings were introduced at the inter-
face to restore gauge invariance. However, numerical tests indicated that this theory had vector-like
interactions, as the Yukawa couplings created a new domain wall [12]. Ref. [13] recently proposed
localizing the 2n-dimensional gauge field around s = 0 in a gauge-invariant manner, shown in
Fig. 3. Specifically, the gauge field in the extra dimension obeys the gradient flow equation,1

∂sAµ(x,s) =
ε(s)

Λ
DνFνµ Aµ(x,0) = A(x)µ µ,ν = 1,2, . . .2n (3.1)

where Fµν is the field strength tensor defined in terms of Aµ(x,s) and Aµ is the integration variable
in the path integral measures; for simplicity, the domain wall masses m± are set equal to Λ. The
gradient flow equation acts like a heat equation, dampening out the high momentum modes of the
gauge field. This results in the fermions localized at s=±L effectively coupling with exponentially
soft form factors. Gauge invariance is maintained as the equation is gauge-covariant.

The properties of the gradient flow equation can be demonstrated in 2-dimensional QED. The
gauge field decomposes as

Aµ(x,s) = ∂µω(x,s)+ εµν∂νλ (x,s) (3.2)

where ω , the gauge degree of freedom, shifts under gauge transformations and λ , the physical
degree of freedom, does not; this decomposition also ignores fields of nontrivial topology. Each
degree of freedom satisfies its own flow equation,

∂sω(p,s) = 0 ∂sλ (p,s) =
ε(s)

Λ
p2

λ (p,s) . (3.3)

Notice that fermions at both s = 0 and s = L couple identically to the gauge degree of freedom
while the fermions at s = ±L couple to the physical degree of freedom with form factor e−p2L/Λ

which tends to zero as L→ ∞. Therefore, it seems plausible that in the limit of an infinite extra
dimension, RH fermions decouple from the spectrum of the theory in a gauge-invariant manner.

The construction has the necessary road to failure for anomalous fermion representations due
to the existence of nonlocality in the low energy 2n-dimensional effective theory. Similar to the
U(1)A symmetry, the Callan-Harvey mechanism results in a Chern-Simons action

S3 = c3
Λ

|Λ|

∫
d2xds (ε(s)−1)Tr

[
F ∧A − 1

3
A ∧A ∧A

]
(3.4)

1For simplicity, we work with the continuum gradient flow equation for now.
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where ε(s) is due to the fermions, (−1) is due to the Pauli-Villars and c3 is a known coefficient.
Focusing on 2-dimensional QED, Eq 3.4 can be evaluated by noticing that the Tr term is a total
s-derivative and so, upon integration by parts, only the surface terms at s = 0,±L contribute. This
results in a nonlocal 2-dimensional action,

SCS = 2c3 ∑
i

q2
i

Λi

|Λi|

∫
d2xd2y

(
∂µ∂α

∂ 2 Aµ(x)
)

Γ(x− y)
(

∂µ∂β

∂ 2 εβγAγ(x)
)

(3.5)

where the sum is over fermion species with gauge coupling qi and domain wall mass Λi. As long
as this operator is present, the 2-dimensional theory is nonlocal. However, this term vanishes if

∑
i

q2
i

Λi

|Λi|
= 0 . (3.6)

and locality is restored. Since Λ/|Λ| is the chirality of the fermion sitting at s= 0, the sum only van-
ishes for fermion representations that are gauge-anomaly free in the continuum; an analogous crite-
ria holds in in higher dimensions, as the Chern-Simons prefactor depends on dimension. Therefore
to achieve a local 2n-dimensional theory, the fermions must be in an anomaly-free representation
and the road to failure for this construction of chiral gauge theories is loss of locality.

The proposal of Ref. [13] was formulated at finite L. However, the spectrum of DWF at finite
lattice spacing only has exactly massless modes in the limit of an infinite extra dimension. In such
a limit the methods developed for the vector case can be used to derive the effective operator for
this construction. Ref. [14] does this specifically in the simplifying scenario where all the change
in the gauge field occurs rapidly as shown in Fig. 4. In this ‘abrupt flow’ scenario, there are only
two gauge fields of importance,

Aµ(x) = Aµ(x,0) Aµ
? (x)≡ lim

L→∞
A µ(x,L) . (3.7)

where A? is the attractive fixed point solution to the gradient flow equation. Defining the sign
functions for the Hamiltonians evaluated with these two gauge fields,

ε ≡ ε[Γ2n+1 (DW (A)−m+)] ε? ≡ ε[Γ2n+1 (DW (A?)−m+)] (3.8)

the effective operator for a LH fermion coupling to the gauge field A and a RH fermion coupling to
the gauge field A? is

Dχ = 1+Γ2n+1

[
1− (1− ε?)

1
1+ εε?

(1− ε)

]
(3.9)

for the case where Trε = Trε?.
The operator in Eq. 3.9 satisfies several important properties. It is a solution to the Ginsparg-

Wilson equation, indicating that the fermion mass is multiplicatively renormalized and the U(1)A

symmetry is explicitly violated, as needed to give the correct U(1)A anomaly. The determinant of
this operator also does not have a phase ambiguity, as it can be treated in the same Hamiltonian
approach as the vector case. Lastly, the operator has the continuum limit

lim
a→0

Dχ =

(
0 D(A)µσ µ

D(A?)σ̄
µ

)
, (3.10)
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as would be expected from the setup shown in Fig. 4. If A? is pure gauge then the RH fermions
decouple completely from physical degrees of freedom. However, the continuum gradient flow
equation has multiple attractive fixed points that correspond to gauge fields of different winding
numbers. For these gauge fields, A? is not pure gauge but in fact contains topological gauge config-
urations such as instantons. As these are physically relevant degrees of freedom, it would seem that
the RH fermions do not decouple from the physical spectrum of the theory. It is not fully under-
stood whether these couplings persist for discretized flow equations nor whether their contribution
to the action is extensive. However, the existence of such couplings is a radical departure from how
nonperturbatively regulated chiral gauge theories are typically expected to behave and so it seems
imperative to ask what the phenomenological implications of such topological couplings could be.

References

[1] Luis Alvarez-Gaume and Paul H. Ginsparg, The Topological Meaning of Nonabelian Anomalies,
Nucl. Phys. B243 (1984) 449

[2] Holger B. Nielson and Masao Ninomiya, No Go Theorem for Regularizing Chiral Fermions, Phys.
Lett. B105 (1981) 219

[3] Paul H. Ginsparg and Kenneth G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D25
(1982) 2649

[4] Peter Hasenfratz, Victor Laliena, and Ferenc Niedermayer, The Index theorem in QCD with a finite
cutoff, Phys. Lett. B427 (1998) 125 [hep-lat/9801021]

[5] Martin Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett.
B428 (1998) 342 [hep-lat/9802011]

[6] David B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B288 (1992) 342
[hep-lat/9206013]

[7] Curtis G. Callan, Jr. and Jeffrey A. Harvey, Anomalies and fermion zero modes on strings and domain
walls, Nucl. Phys. B250 (year) page

[8] Rajamani Narayanan and Herbert Neuberger, Chiral determinant as an overlap of two vacua, Nucl.
Phys. B412 (1994) 574 [hep-lat/9307006]

[9] Rajamani Narayanan and Herbert Neuberger, A Construction of lattice chiral gauge theories, Nucl.
Phys. B443 (1995) 305 [hep-th/9411108]

[10] Yigal Shamir, Chiral fermions from lattice boundaries, Nucl. Phys. B406 (1993) 90
[hep-lat/9303005]

[11] Herbert Neuberger, Vector-like gauge theories with almost massless fermions on the lattice, Phys. Rev.
D57 (1998) 5417 [hep-lat/9710089]

[12] Maarten Golterman, Karl Jansen, Donald N. Petcher and Jeroen C. Vink , Investigation of the domain
wall fermion approach to chiral gauge theories on the lattice, Phys. Rev. D49 (1994) 1607
[hep-lat/9309015]

[13] Dorota M. Grabowska and David B. Kaplan, Nonperturbative regulator for chiral gauge theories?,
Phys. Rev. Lett. 116 (2016) 211602 [1511.03649]

[14] Dorota M. Grabowska and David B. Kaplan, A Chiral Solution to the Ginsparg-Wilson Equation,
[1610.02151]

6


