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1. Introduction

Most of the non-perturbative approaches to QCD rely on numerical calculations in the Eu-
clidean space, where synergic studies by lattice simulations, Schwinger-Dyson equations and, more
recently, by variational methods [1-3] have drawn a clear picture for the propagators deep in the IR.
However, many important dynamical information cannot be extracted by the Euclidean formalism,
unless we have an analytic function that can be continued to the physical space or the whole nu-
merical analysis is carried out in Minkowski space [4]. Thus, it is still discussed if the propagators
have poles, while some evidence of positivity violation has been demonstrated by indirect argu-
ments. By a linear regularization strategy, a Källen-Lehmann spectral function was reconstructed
in Ref.[5] from the lattice data of the gluon propagator, giving some direct evidence for positivity
violation and the absence of any discrete mass pole on the physical real axis.

Quite recently, an analytical approach has been proposed that is based on a different expan-
sion point for the exact Lagrangian of pure Yang-Mills theory in the Landau gauge [6,7]. The new
expansion is around a massive free-particle propagator, yielding a massive loop expansion with
massive particles in the internal lines of the Feynman graphs. From first principles, without adding
spurious counterterms or phenomenological parameters, at one-loop the expansion provides ana-
lytical universal functions for the dressing functions, predicting some scaling properties that are
satisfied by the data of lattice simulations. In the Euclidean space and Landau gauge, the mas-
sive expansion is in impressive agreement with the lattice data and the one-loop propagators are
analytic functions that can be easily continued and studied in Minkowski space. In this paper, a
concise review of the massive expansion [7] is presented, in its full version of Ref. [8], containing a
set of chiral quarks. The method has the merit of providing an analytical and consistent framework
for the study of QCD in the infrared and of disclosing the analytic properties of the propagators
in Minkowski space. While based on a perturbative expansion, the method has a variational na-
ture, with an accuracy that can be increased by tuning the mass ratio and the subtraction point to
optimal values that minimize the effect of higher loops. In that sense, the method can be seen as
a special case of the optimized perturbation theory that has been discussed by many authors in the
past [9,10] and has been recently improved by RG methods [11]. The study of the spectral functions
gives direct predictions on the dynamics of quarks and gluons. For instance, no poles are found for
the gluon on the physical positive real axis and the positivity constraints are strongly violated for
quarks and gluons, as expected for confined degrees of freedom. Moreover, complex conjugated
poles are found for the gluon propagator, confirming the i-particle scenario [12] predicted by the
refined version [13-15] of the Gribov-Zwanziger model [16].

2. The Massive Expansion in the Chiral Limit

The total action of QCD, including N f massless chiral quarks, can be written as Stot = S0+SI ,
where the free-particle term S0 is the usual quadratic part in terms of the standard free-particle prop-
agators of gluons, quarks and ghosts, namely ∆0, S0 and G0, respectively. As shown in Refs. [7,8]
we may add and subtract the arbitrary terms δSg, δSq in the total action

S0 → S0 +δSq +δSg, SI → SI −δSq −δSg (2.1)
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and take

δSg =
1
2

∫
Aaµ(x)δab δΓµν

g (x,y)Abν(y)ddxddy, δSq =
N f

∑
i=1

∫
Ψ̄i(x)δΓq(x,y)Ψi(y)ddxddy (2.2)

where the vertex functions δΓg, δΓq are given by a shift of the inverse propagators

δΓµν
g (x,y) =

[
∆−1

m
µν
(x,y)−∆−1

0
µν
(x,y)

]
, δΓq(x,y) =

[
S−1

M (x,y)−S−1
0 (x,y)

]
(2.3)

and ∆m
µν , SM are massive free-particle propagators

∆−1
m

µν
(p) = ∆m(p)−1tµν(p)+

−p2

ξ
ℓµν(p)

∆m(p)−1 =−p2 +m2, SM(p)−1 = ̸ p−M. (2.4)

Here tµν , lµν are Lorentz projectors and the masses m and M are totally arbitrary. Since δSq and
δSg are added and subtracted again, the total action cannot depend on the masses, but any expansion
in powers of the new shifted interaction SI → SI − δSq − δSg is going to depend on them at any
finite order because of the truncation. Thus, while we are not changing the content of the theory, the
emerging perturbative approximation is going to depend on the masses and can be optimized by a
choice of m and M that minimizes the effects of higher orders, yielding a variational tool disguised
to look like a perturbative method [7,8]. The idea is not new and goes back to the works on the
Gaussian effective potential [9,17-25] where an unknown mass parameter was inserted in the zeroth
order propagator and subtracted from the interaction, yielding a pure variational approximation
with the mass that acts as a variational parameter.

The shifts δSq, δSg have two effects on the resulting perturbative expansion: the free-particle
propagators are replaced by massive propagators and new two-point vertices are added to the in-
teraction, arising from the counterterms δΓg = m2 and δΓq(p) =−M. We work in Landau gauge,
the optimal choice for the massive expansion [7], the gluon propagator is transverse and we can
drop projectors and all color indices. We can use the standard formalism of Feynman graphs with
massive zeroth order propagators ∆m, SM. Assuming that the effective coupling never reaches val-
ues that are too large [7], we may neglect higher loops and take a double expansion in powers of
the total interaction and in powers of the coupling, retaining graphs with n vertices at most and no
more than ℓ loops. The graphs contributing to the quark and ghost self-energy and to the gluon
polarization are shown in Fig.1 up to the third order and one-loop.

3. Pure Yang-Mills theory

The dressed propagators of pure SU(N) Yang-Mills theory can be written as

∆(p)−1 =−p2 +
5
8

αm2 − [Π(p)−Π(0)] , G(p)−1 = p2 −Σgh(p) (3.1)

where the ghost self-energy Σgh and the gluon polarization Π were evaluated in Ref. [7] as a sum of
the graphs in Fig.1 (omitting quark loops) and α is an effective coupling. The one-loop gluon and
ghost propagators are made finite by standard wave function renormalization and explicit analytic
expressions were derived by dimensional regularization in Ref. [7].
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It is useful to introduce the adimensional ghost and gluon dressing functions

χ(p) = p2G(p), J(p) =−p2∆(p). (3.2)

They can be written as

[α χ(s)]−1 = G(s)+G0 [α J(s)]−1 = F(s)+F0 (3.3)

where s = −p2/m2 is the Euclidean momentum and the two adimensional functions F(s), G(s)
are given by the polarization and self energy graphs in Fig.1, while all the constants are grouped
together in the finite one-loop renormalization constants F0 and G0 that are the only free param-
eters to be optimized. Being equivalent to a variation of the subtraction point, any change of the
additive constant can be seen as a variation of the renormalization scheme yielding a special case
of optimized perturbation theory that has been proven to be very effective for the convergence of
the expansion [10].

A very important consequence of Eq.(3.3) is that, up to an arbitrary multiplicative renormal-
ization constant, the inverse dressing functions are given by the universal functions F(s) and G(s)
up to an additive renormalization constant. Such scaling property is satisfied quite well by the
lattice data for SU(2) and SU(3) that collapse on the same universal curves F(s), G(s) in the in-
frared [6-8,26] as shown in Fig.2. That scaling property confirms that higher order terms can be
made negligible by an optimized choice of the constants F0, G0. Since ghosts are not coupled with
quarks at one-loop, their scaling properties holds even for unquenched data in Fig.2.

The gluon propagator can be continued to Minkowski space by setting s = −p2/m2 − iε and
the resulting complex function is shown in Fig.3. The imaginary part has a cut for p2 > 0 where it
defines a spectral function. The lack of any sharp peak or pole on the real axis and the violation of
positivity can be regarded as a direct proof of confinement.

Out of the real axis, in the complex plane, the propagator has two conjugated poles at p2 ≈
(0.16±0.60i) GeV2, close to the imaginary axis, as predicted by the i-particle scenario [12] emerg-
ing from the refined version [13-15] of the Gribov-Zwanziger model [16].

=Σ +gh

= +qΣ + +

++= + + +Π

++ + +

Figure 1: Two-point graphs with no more than three vertices and no more than one loop. The
crosses are the counterterms δΓg = m2, δΓq =−M.
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Figure 2: The inverse gluon and ghost dressing functions, zJ−1(p/x) + y and z′χ−1(p/x) + y′,
respectively, scaled by the parameters of Table 1. The lattice data of Bogolubsky et al.[27] and
Duarte et al.[28] for SU(3) are compared with the data of Cucchieri and Mendes [29,30] for SU(2)
and with the unquenched data of Ayala et al.[31] for full QCD with N f = 2 and N f = 2+1+1. The
solid curves (red lines) are the one-loop universal functions F(s), G(s) for s = p2/m2, m = 0.73
GeV and shifted by the optimal constants F0 =−1.05, G0 = 0.24.

Data set N N f x y z y′ z′

Bogolubsky et al.[27] 3 0 1 0 3.33 0 1.57
Duarte et al.[28] 3 0 1.1 -0.146 2.65 0.097 1.08

Cucchieri-Mendes [29,30] 2 0 0.858 -0.254 1.69 0.196 1.09

Ayala et al.[31] 3 0 0.933 - - 0.045 1.17
Ayala et al.[31] 3 2 1.04 - - 0.045 1.28
Ayala et al.[31] 3 4 1.04 - - 0.045 1.28

Table 1: Scaling constants x, y, z (gluon) and y′, z′ (ghost) used in Fig.2. The constant shifts
F0 = −1.05, G0 = 0.24 and the mass m = 0.73 GeV are optimized by requiring that x = 1 and
y = y′ = 0 for the lattice data of Bogolubsky et al.[27]

4. Chiral QCD

The inclusion of a set of chiral quarks requires the calculation of the quark loops contributing
to the gluon polarization and the quark self-energy Σq. At one-loop, we must add all the graphs of
Fig.1.

As for pure Yang-Mills theory, the gluon dressing function is still given by Eq.(3.3) provided
that a quark correction ∆F(s) is added to the function F(s). Explicit results are derived in Ref. [8].
Besides being more rich on the real positive axis p2 > 0, for N f = 2 the unquenched gluon propa-
gator has more poles in the complex plane. For the optimal set m = 0.8 GeV, M = 0.65 GeV We
find two pairs of conjugated poles at p2 ≈ (1.69±0.1i) GeV2 and p2 ≈ (0.54±0.52i) GeV2.

The quark self energy Σq is given by the tree term δΓq = −M and three one-loop graphs, as
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Figure 3: The real and the imaginary part of the gluon propagator of pure SU(3) theory are dis-
played together with the lattice data of Ref.[27].
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Figure 4: Details of the quark spectral functions for αs = 0.9, M = 0.65 GeV, m = 0.7 GeV.

shown in Fig.1. The explicit analytical result can be continued and explored in Minkowski space
as shown in Ref. [8]. The quark propagator can be written as

S(p) = Sp(p2)̸p+SM(p2) (4.1)

and the scalar functions Sp, Sm can be continued to the complex plain. The imaginary parts have a
cut on the real positive axis p2 > 0 where we can define two spectral densities

ρM(p2) =− 1
π

ImSM(p2), ρp(p2) =− 1
π

ImSp(p2). (4.2)

The spectral functions are shown in Fig.4 for αs = 0.9, M = 0.65 GeV. We recognize a discrete
term in the spectral functions at the constituent quark mass p ≈ 0.32 GeV, that arises from the pole
of the propagator. However the positivity conditions are strongly violated by the spectral functions,
giving a direct proof of confinement.
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