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In lattice QCD the computation of one-particle irreducifi€’l) Green'’s functions with a large
number (> 2) of legs is a challenging task. Besides tuninggtiiee spacing and volume to reduce
finite size effects, the problems associated with the esitmaf higher order moments via Monte
Carlo methods and the extraction of 1PI from complete Geefumictions are limitations of the
method. Herein, we address these problems revisiting tloellation of the three gluon 1PI
Green’s function.
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1. Introduction and motivation

In a quantum field theory, the Green’s functions summarize the dynamice ohdory. In
particular, in QCD the Green'’s functions provide valuable information tihor-perturbative phe-
nomena, like confinement and chiral symmetry breaking.

A n-point complete Green'’s function defined as

G (xy,...,%) = (O]T (@(x2) - @(Xn)) 0) , (1.1)

may be decomposed in terms of one particle irreducible (1P1) fundfifiswhich can be parame-
trized in terms of various scalar form factors. Although the lattice appradlotvs for a first
principles determination of the complete Green’s functions of QCD, in gkitésaonly able to
compute suitable combinations of the form factors.

Here we focus on the three gluon vertex in Landau gauge, which playsdarental role in
the physics of the strong interactions. Indeed, from the three gluorxveiteossible to compute
the strong coupling constant or to measure a static potential between catgesh Furthermore,
under the assumption that the ghost propagator remains essentially masgsteslsrange of mo-
menta, the requirement that the Dyson-Schwinger equations (DSE) #eeiriplies that some
of the higher order gluonic Green’s functions should change sign in treréd region. This is
the case of the three gluon vertex. Such zero crossing has alreatghmeyved in continuum ap-
proaches [1, 2], SU(2) 3d lattice simulations [3, 4], and very recentlyigBH4d lattice simulations
[5].! The DSE analysis suggests that, for SU(3), the zero crossing shouid @ica momentum
scale~ 130— 200 MeV [2].

In momentum space, the three point complete Green'’s funaffﬁﬁzﬁ(pl, P2, p3) is defined
as

(AL (p1) ASZ(P2) A (P3)) =V &(p1+ P2+ ps) GiL32% (p1, P2, P3) (1.2)

and, in terms of the gluon propagator

D% (p) = 8P, (P)D(P2), P (P) = S —p‘l‘ofv, (1.3)

and the 1Pl vertek, it reads
Gl (PL Pe: Ps) = Db (Pu) DA% (P2) DA (Pa)Muibses (P, Pz: Pa). (1.4)
The color structure of the 1PI vertex is given by
2% (P1, P2, P3) = fayapasl iy piops (PL; P2, P3)- (1.5)

Bose symmetry requires the vertex to be symmetric under the interchangepiaip;, &, 1),
thereforel ;, 11,4, (P1, P2, P3) Must be antisymmetric under the interchange of any (i ).

In the continuum, a complete descriptionlQf, ;,, . (P1, P2, P3) requires six Lorentz invariant
scalar form factors. See [7] for details.

1See [6] for another recent lattice calculation of the three gluon vertex.
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Figure 1: Three gluon vertex. All momenta are incoming.

2. Lattice setup

We have performed lattice simulations for pure SU(3) Yang-Mills theory ugiegwilson
gauge action, fo3 = 6.0. We considered two different lattice volumes?6#ith 2000 config-
urations, and 8 with 279 configurations. All configurations have been rotated to the d&and
gauge using the FFT-SD method [8], which was implemented combining Chrdnaad®PFFT
[10] libraries. For the definition of the gluon field we use

U () =UT(x)  Tr[Uu(x) —UT(x)]

agoAy (x+aé,/2) = 5 6 , (2.1)
with the definition in momentum space given by
o 271n
Au(P) = e PR A (x 88, /2) L Pu= b (2.2)
X aLH
Besidesp, we also use the tree-level improved momentum
2 . [/ap
Py = _ sin (2“> (2.3)

in the description of the results.
In order to access the 1Pl three gluon vertex from the lattice we consileolbr trace

Gy piops (P1, P2, P3) = Tr (Apy (P1) A (P2) A (P3)) =

2 _
—va(py+ pot po) MY by b2y p(R)

4
PlllVl(pl) Puzvz(pz) PIJ3V3(p3) rV1V2V3(p1> P2, p3) (24)

where(---) means average over gauge configurations. Of all possible momenturguratifins,
in this work we only investigate the case with one vanishing momergpiga 0. This momen-
tum configuration has been used in the first lattice study of the three glutex\éd]. For this
kinematics

Ng(NZ —1)
—

2
P12 D0) -2 by, T (p) @5)

Gﬂlllzlls ( p,0,— p) =V 3
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and, in terms of the Ball-Chiu decomposition [F'],p?) reads
F(p%) = 2|A(p?, p%0) + p°C(p?, p%0) | (2.6)

Here we report the form factér(p?) as measured from the combination

Ne(NE — 1)

Guau(p,0,—p) pa =V——7— [D(p")]"D(0) T(p*) P (2.7)

3. Theinfrared region

In Figure 2(a) we report the bare gluon propagator for both latticenalnies described in the
previous section. No clear volume effects are seen in the’ddtareover, in Figure 2(b) the lattice
data define a unique curve for different types of momenta, and theratorotational symmetry
breaking effects are seen in the propagator.
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(a) Bare gluon propagator for both lattices. (b) 64* propagator for different types of momenta.

Figure 2: Bare Landau gauge gluon propagator.

In Fig. 3T (p?) is plotted for different types of momenta. For the*@dttice, the data for
(n000) momenta does not follow the same curve as the other types of momenta. Furéheono
the 8¢ lattice, momenta of typén000) does not provide any useful information about the form
factor. As a consequence, from now on we will disregard the momentapef(tp)00) in our
analysis.

The form factorl (p?) for both data sets and for momenta up to 2 GeV can be seen in Fig.
4. Although we see larger statistical errors for the larger volume, thétsdsom the two lattice
ensembles are essentially compatible within errors. In what concerns hiagiter in the low
momenta region, we see a negativg?) = —0.80(37) at p = 216 MeV for the larger lattice.
This value is compatible with zero only within 2&® Note that for higher momenta, we have
M(p=270 MeV) = 0.171(73) from the 64 volume and™ (p = 264 MeV) = 0.58(43) from the 8¢
volume. In this sense, our data suggests that a zero crosdiriginshould take place fop < 250
MeV. Earlier lattice simulations reported a zero crossing at essentially theraamentum value.

2See [12, 13] for an analysis of finite volume and finite lattice spacingtsfied.andau gauge two-point correlation
functions.
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Figure 3: Infraredr (p?) p? for different types of momenta.
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Figure 4: I'(p?) for the simulations considered in this work.
4. Theultraviolet region
The measurement 6f(p?) requires the computation of the ratio
G 0,—
pap(P,0,—p) pa. 4.1)

[D(p?)}? D(0)

This ratio induces large statistical fluctuations at high momenta. In fact, if susv@sgaussian error
propagation for the estimation of the statistical errof¢p?), we obtainAl (p?) ~ p?. However,

it is possible to measure the following combination

Fuv(p?) = [D(p?)] D(0) T (p?) P

with controllable statistical errors. Combining the predictions from one-lenpnmalization

(4.2)

group

improved perturbation theory f@(p?) andr (p?), we get the following result for the behaviour of
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Figure5: Comparison of yy (p?) computed from the B4simulation with the predictions from perturbation
theory.

Muv (p?) at high momenta:

y
Z [ p
Fuv(p?) = = [In } 4.3
(p%) 7 "2 (4.3)
wherey = —35/44,Z is a constant ang is a renormalization scale.

The results fol yy (p?) can be seen in Fig. 5 where we also show the prediction from tree-
level perturbation theorfyy (p?) ~ é and the prediction of Eq. (4.3).

5. Conclusions

We have computed the three gluon complete Green’s function on the lattice pfmticular
kinematical configurationg, = 0), using two different lattice volumeg5.5 fm)* and (8.2 fm)# for
the same lattice spacing £ 0.102 fm). In what concerns the low momenta region, we verified that
the form factor (p?) exhibits a zero crossing fgr ~ 250 MeV. Earlier results for 3d SU(2) [3, 4]
and 4d SU(3) [9] lattice simulations are in good agreement with ours. Wedisov@bserved that,
for sufficiently high momenta, the lattice data is compatible with the prediction of meadisation
group improved perturbation theory. More details about our work cdoura in [14].
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