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1. Introduction

The study of the effects of virtual particles has a very long history. In particular the vacuum

polarization due to electron-positron pairs was studied first by Euler and Heisenberg [1] and later

by Schwinger [2].

Among the later developments we can mention the vacuum polarization to all orders as given

by the fermion determinant, whose properties were studied, e.g., in [3], [4]. The quantum effects

on vortex fields were analyzed by Langfeld et al [5], Schmidt and Stamatescu [6] pointed out that

the fermion (and boson) determinant on the lattice can be viewed as a gas of closed loops and

simulated numerically via a random walk - to quote only some of the more recent work.

Here we consider lattice gauge theories and derive and discuss a general loop formula for

the fermion determinant. It is based on the loop expansion [7] and has been used for HD-QCD

[8], an approximation of QCD for large mass and chemical potential [9], providing systematic

approximations to QCD. The formula can however lead to misinterpretations. We (re)derive it here

explicitely and discuss its features in detail. See also [10] for a more general discussion.

2. A simple example

We consider

det (1− k(X +Y )) = etr ln(1−k(X+Y)) (2.1)

The traces distinguish between the strings XXYY and XY XY , say, but identify cyclic permutations,

such as XXYY and XYY X . Expanding the exponent in (2.1) we obtain:

− ktr(X +Y)− 1

2
k2tr(X2 +2XY +Y 2)− ...− 1

4
k4tr(X4 +4X3Y +2(XY)2 +4X2Y 2 + ...)

= −ktrX − 1

2
k2trX2 − 1

3
k3trX3...− k2trXY − 1

2
k4tr(XY )2... (2.2)

where we regrouped the terms observing the order in which the monomials are formed in the

products (X +Y )(X +Y )(X +Y ).... We immediately see that resumming the terms which are

powers of a lowest order monomial (what we shall call “s-resummation”) we get the ln series.

To simplify the further discussion we shall now consider X = x and Y = y as just complex

numbers, then:

ln(1− k(x+ y) = ln(1− kx)+ ln(1− ky)+ ln(1− k2xy)... (2.3)

1− k(x+ y) = (1− kx)(1− ky)(1− k2xy)(1− k3x2y)(1− k3xy2)... (2.4)

Obviously we have on the LHS of Eq. (2.4) a polynomial in k while on the RHS we have an infinite

product. Since the derivation is formally correct it is clear that the validity of Eqs. (2.3),(2.4)

implies cancelations between infinite series which calls for convergence arguments.

In particular in this example the LHS in Eq. (2.4) has just one zero at k = 1
x+y

while the RHS

appears to have an infinite series of zeroes at k = 1/x,1/y,1/
√

xy, .... For k < 1
|x|+|y| convergence

is ensured. The formula provides a series of approximations of the LHS, so, e.g. cutting after the

3-d order factor and expanding the product gives 1− kx− ky+O(k4), correct to this order.
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What we did was to apparently replace the one log cut on LHS in (2.3) by a superposition of

log cuts on the RHS, correspondingly the one zero of the LHS in (2.4) by a superposition of zeroes

on the RHS. The RHS zeroes (cuts) are not approximations of the LHS ones, but truncations of the

product give approximations to the LHS which may be very good in the convergence domain.

For an illustration we may enquire which is the variable’s manifold on which the determinant

vanishes. We find the zeroes of the RHS always lying above the LHS one, with the lowest order

ones (the straight lines) nearest to it. The first 3 factors give 1−κ(x+y)+κ3xy(x+y), a 3-d order

approximation whose error increases drastically outside the domain of convergence x+ y ≤ 1/κ .

✵�✵ ✵�✁ ✶�✵ ✶�✁ ✷�✵ ✷�✁

✵�✵

✵�✁
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Figure 1: Left plot: Zeroes of the RHS in the x, y plane compared with the zero of the LHS (the diagonal of

the square). Right plot: The error of the 3-d order approximation vs x, y. The unit is 1
κ .

3. The loop formula for QCD with Wilson fermions in d = 2, 4.

For definitness we give here the Wilson fermion matrix in d = 2, 4 for one flavour:

W = 1−κQ (3.1)

= 1−κ
d−1

∑
i=1

(

Γ+iUi Ti +Γ−i T
−1

i U−1
i

)

−κ
(

e µ Γ+d Ud Td + e−µ Γ−d T−1
d U−1

d

)

Γ±ν = 1± γν , γν = γ∗ν , γ2
ν = 1, trΓ±ν = d, (3.2)

(T : lattice translations, κ : hopping parameter, µ chemical potential). For latter generalisation we

take the links Uν ∈ SL(3,C) ⊃ SU(3).

The loop expansion and the loop formula for DetW are

DetW = Det(1−κQ) = eTr ln(1−κQ) (3.3)

= exp

[

−
∞

∑
l=1

∑
{Cl}

∞

∑
s=1

gCl

s

s
trD,C

[

L
s
Cl

]

]

(3.4)

=
∞

∏
l=1

∏
{Cl}

det
D,C

(1 − gCl
LCl

) , (3.5)

gCl
= κ l

(

ε eNdµ
)r
, LCl

= ∏
λ∈Cl

ΓλUλ . (3.6)
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Here Cl are distinguishable, non-exactly-self-repeating lattice closed paths of length l (called pri-

mary paths in the follwing). r is the net winding number of the path in the time direction (d), with

p.b.c. or a.p.b.c. and ε =+1(−1) correspondingly ( p.b.c. in the ‘spatial’ directions). Det, Tr imply

Lattice, Dirac, and colour d.o.f., L s
Cl

≡ (LCl
)s

is the chain of links and Γ factors along a primary

path (a primary loop), closing under the trace after s repeted coverings of the path Cl. From Eq.

(3.4) to (3.5) we used “s-resummation”.

Derivation:

Q implies unit steps on the lattice and Qn generates a (closed) path of length n, with the weight 1
n
.

This can be the s repetion of a closed path of length l - a primary path. The primary path can start

cyclically at each of its points, has therefore multiplicity l, its repetitions do not bring new paths.

(NB: Pauli’s principle was used obtaining the determinant, after that it’s matrix algebra.)

The colour and Dirac traces close over the whole chain of length ls, the s power of the primary

loop LCl
Eq. (3.6) and do not depend on the starting point of the latter. Their contribution comes

therefore with the weight l
ls
= 1

s
and the factor gCl

coming from the links - see Eq. (3.4). We

recognize here the logarithm series, and partial summations over s and exponentiation lead to Eq.

(3.5).

The loops in Eq. (3.6) can be rewritten as

LCl
= ΓCl

UCl
, ΓCl

= ∏
λ∈Cl

Γλ , UCl
= ∏

λ∈Cl

Uλ (3.7)

trD,CL
s
Cl
= trDΓs

Cl
trCU s

Cl
≡ tr (ΓCl

)s
tr (UCl

)s

since the Dirac and colour traces factorise. The Dirac factors trΓs
Cl
≡ trDΓs

Cl
can be calculated for

each Cl geometrically [7] or numerically.

For loops exploring up to three dimensions we have moreover [7]

2

d
tr [ΓCl

]s =

[

2

d
trΓCl

]s

= hs
Cl

(3.8)

which simplifies the contributions of these loops to

det
C
(1−gCl

hCl
UCl

) = (1+C3
Cl
)(1+a trUCl

+b trU−1
Cl

), (3.9)

CCl
= gCl

hCl
, a =

CCl

(1+C3
Cl
)
, b = aCCl

(3.10)

4. Applications

4.1 HD-QCD

For QCD at chemical potential µ > 0 the coefficients of primary loops of length l with positive

net winding number r > 0 in the time direction are

gCl
= κ lσ ε rζ rNτ , lσ = l − r Nτ ≥ 0, ζ =

d

2
κe µ (4.1)

Here d = 2,4, ε = ∓1 for (a.)p.b.c.. Since ζ and κ play different roles we order the contributions

according to lσ .

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
5
7

On the loop formula Ion-Olimpiu Stamatescu

HD-QCD in leading order (LO, lσ = 0) ensues in the limit [9]

κ → 0, µ → ∞, ζ : f ixed (4.2)

It describes gluon dynamics with static quarks. Only the straight Polyakov loops P in Eq. (3.5)

survive. With lσ = 2 we retrieve Polyakov loops with one decoration, P̃, and the quarks have some

mobility - [8]. The corresponding contributions are of the form Eq. (3.10), with

CP ≡C = ε(
d

2
ζ )Nτ , CP̃ ≡Cr = κ2Cr, (4.3)

respectively. The decoration can be inserted anywhere along the Polyakov loop and have any

length. There are therefore 2(d−1)Nτ (Nτ −1) primary decorated loops of length l = Nτ +2. From

each of them we can form, however, further primary loops of order κ2 by attaching or inserting any

number r > 1 of straight Polyakov loops to obtain .

We obtain to this order (up to a constant factor)

detW [2] = ∏
~x

(1+a trP~x+b trP−1
~x ) ∏

q
∏
r≥1

(1+ar trP̃q,r,~x +br trP̃−1
q,r,~x), (4.4)

a =C(1+C3)−1, b = aC, ar =Cr(1+C3
r )

−1, br = ar Cr (4.5)

Here q identifies the 2(d − 1)Nτ(Nτ − 1) shortest decorated Polyakov loops. The second factor in

Eq. (4.4), however, is an infinite product. For κ small enough to ensure convergence we can cut

the product, e.g. at r = 1, this was done in [8] for a reweighting simulation to produce the phase

diagram of QCD with 3 flavours of heavy quarks.

4.2 Complex Langevin Simulation

The CL process associated to a partition function Z with complex measure proceeds in the

manifold of a complex variable z and involves a drift force K as the logarithmic derivative of the

measure

Z =

∫

dzρ(z), δ z(t) = K(z)δ t +ω(z, t), K(z) =
ρ ′(z)
ρ(z)

, (4.6)

with ω an appropriately normalized random noise.

A CL process to simulate QCD at nonzero µ takes place in the complexified space of the

link variables U ∈ SL(3,C) [11], [12]. The drift incorporates the logarithmic derivative of the

determinant and needs the evaluation of the inverse of W , Eq. (3.1) which is a large matrix of rang

Nd−1
σ NτNcd.

Using the loop formula Eq. (3.5) we have

K(Uλ ) = ∑
{Cλ }

∂Uλ
detD,C

(

1 − gCλ
LCλ

)

detD,C

(

1 − gCλ
LCλ

) (4.7)

where the sum involves all loops Lλ which contain the link Uλ and the terms are easily calculable.

There are of course infinitely many such loops and they may also contain powers of Uλ , a simulation

on these lines can only be achieved if we can meaningfully limit the number of terms in Eq. (4.7).
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5. Two more simple examples

For illustration we present here 2 simple examples: a 1-d a.p.b.c. chain and a 2×2 lattice with

free b.c.in one direction and (a.)p.b.c. (for ε =∓1, respectively) in the other direction - see Fig. 2.
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Figure 2: Chain (left plot) and 2×2 lattice without gauge fixing (middle) and in maximal gauge (right plot).

The chain has only one primary loop P = U1U2 and the loop formula reproduces the exact

detW

detW = 1+4ζ 2P+4κ4ζ−2P−1 +16κ4 (5.1)

A similar result holds also for Polyakov loops of any length with a correspondig power of ζ 2.

In the 2× 2 lattice example there are 12 primary loops of length l ≤ 6, listed here with their

weights 1

L1,2 : U1U2, V1V2, (4εζ 2), (5.2)

L3,4 : S1V1S−1
2 U−1

1 , S2V2S−1
1 U−1

2 , (−4κ4), (5.3)

L5,6 : S1V1S−1
2 U2, S2V2S−1

1 U1, (4εζ 2κ2), (5.4)

L7−9 : S1V1V2V1S−1
2 U2, S2V2S−1

1 U1U2U1, S1V1V2V1S−1
2 U2, (−16ζ 4κ2), (5.5)

L10−12 : S2V2V1V2S−1
1 U1, S1V1V2S−1

1 U1U2, S2V2V1S−1
2 U2U1, (−16ζ 4κ2) (5.6)

The loop formula keeping only the loops of length up to 6 gives to 2-nd order in κ (in maximal

gauge)

D[0](1,2) = 1−4εζ 2(U +V )+16ζ 4U V D[2](3−6) =−4εκ2ζ 2(V X +U X−1) (5.7)

D[2](7−12) = 1−16κ2ζ 4(2U V +X V U +X−1U V +X−1U2 +X V 2)) (5.8)

and we obtain the determinant to order κ2 including all loops up to length 6, in complete agreement

with the exact determinant to this order

detW [2,6] = 1−4εζ 2(U +V )+16ζ 4U V −4εζ 2κ2(V X +U X−1)−32ζ 4κ2U V (5.9)

1The authors are indebted to E. Bittner for providing a program to obtain primary loops.
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6. Discussion

As appealing as the loop formula appears its use is involved. The formula does not allow

an interpretation as “linear factors” decomposition, but provides a systematic approximation in κ

approaching the true determinant in the convergence domain. As we have seen in sect. 1, leaving

the latter will provide a rather poor approximation.

On the other hand we can see the various orders in the loop expansion as models by themselves

and may analyse their properties. In that case we have however to introduce some way of limiting

the number of loops at any given length, e.g. in a random walk generation of such loops.

The usefulness of the loop formula relies therefore on its correct interpretation and adequate

use.

Acknowledgment: Support from the Deutsche Forschungsgemeinschaft in the frame of the

project STA 283/16-2 is thankfully acknowledged.

References

[1] W. Heisenberg and H. Euler, Z. Phys. 98 (1936) 714 [physics/0605038].

[2] J. S. Schwinger, Phys. Rev. 82 (1951) 664.

[3] E. Seiler, in: Proceedings of the International Summer School of Theoretical Physics, Poiana Brasov,

Romania, 1981, edited by P. Dita, V. Georgescu, and R. Purice, Progress in Physics (Birkhäuser,

Boston, 1982), Vol. 5, p. 263-310.

[4] M. P. Fry, Phys. Rev. D 91 (2015) 085026 [arXiv:1504.03117 [hep-th]].

[5] K. Langfeld, L. Moyaerts and H. Gies, Nucl. Phys. B 646 (2002) 158 [hep-th/0205304].

[6] M. G. Schmidt and I. Stamatescu, Mod. Phys. Lett. A 18 (2003) 1499.

[7] I.-O. Stamatescu, Phys. Rev. D 25 (1982) 1130.

[8] R. De Pietri, A. Feo, E. Seiler, I.-O. Stamatescu, Phys. Rev. D 76 (2007) 114501

[9] I. Bender, T. Hashimoto, F. Karsch, V. Linke, A. Nakamura, M. Plewnia, I.-O. Stamatescu and

W. Wetzel, N.Ph. Proc.S. 26 (1992) 323.

[10] E. Seiler and I.-O. Stamatescu, J. Phys. A Math. and General 2016 on-line, [arXiv:1512.07480v3]

[11] G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, I.-O. Stamatescu, Eur. Phys. J. A 49 (2013) 89

[12] G. Aarts, E. Seiler, D. Sexty and I.-O. Stamatescu, Phys. Rev. D 90 (2014) no.11, 114505

6


