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1. Introduction

One of the most demanding problems of computational physics is the sign problem, arising
from the fluctuating phase of a complex action. A promising candidate to overcome it could be
the complex Langevin method, a stochastic quantization approach [1] first discussed in [2]. How-
ever, convergence to correct expectation values is only guaranteed under certain conditions [3, 4]
and therefore one has to use benchmarks for validation with computational costs usually growing
exponentially with system size.

Therefore, we study QCD in lower dimensions, in particular 1+1d, where the sign problem is
already severe enough for a meaningful test of the complex Langevin method and running bench-
marks is still possible with either the subset method [5] or reweighted phase-quenched simulations,
making it an ideal test model before applying this method to full QCD.

2. Partition function and Dirac operator

We consider the strong coupling partition function of a single quark

Z =
∫

D [U ]detD[U ], (2.1)

using the notation [U ] = {Unν} for simplicity. The two-dimensional staggered Dirac operator

Dk,l = mδk,l +
1
2

[
eµUk0δk+0̂,l− e−µU−1

l0 δk−0̂,l

]
+

1
2
(−1)k0

[
Uk1δk+1̂,l−U−1

l1 δk−1̂,l

]
(2.2)

depends on the quark mass m, the chemical potential µ and the gauge link configuration [U ]. We
considered antiperiodic boundary conditions in the temporal direction ν = 0, where a unit step in
direction ν is denoted by ν̂ .

Presented results are obtained from small lattices 4×4 with lattice spacing a = 1.

3. Complex Langevin dynamics

With Gell-Mann representation of the gauge links

Unν = exp

[
i

8

∑
a=1

ωnνaλa

]
, (3.1)

the discretized CL update step is given by the rotation

U ′nν = RnνUnν Rnν = exp

[
i

8

∑
a=1

(
εKnνa +

√
εηnνa

)
λa

]
, (3.2)

with time discretization ε , real Gaussian distributed noise ηnνa of variance 2 and deterministic drift
term Knνa depending on the chosen discretization scheme, e.g. for action S =− logdetD:

Knνa =−
∂

∂α
S
({

eiδn,n′δν ,ν ′αλaUn′ν ′
})∣∣∣

α=0
(3.3)
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for Euler discretization. We used a Runge-Kutta scheme for faster convergence in ε . Independent
of the discretization, the drift becomes complex for µ 6= 0 and automatically drives the SU(3) gauge
link starting configuration into SL(3,C).

There are proofs regarding the correctness of this method under certain conditions, i.e. that
the expectation value of an observable O is the same in the original and complexified theory

〈O〉=
∫

SU(3)

D [U ] detD[U ]O[U ] =
∫

SL(3,C)

D [U ]PCL[U ]O[U ], (3.4)

where PCL ∈R denotes the sampling probability of the complex Langevin method. See [3, 6] for
problems with

(A) large excursions in the imaginary direction

(B) insufficient suppression of singular drifts and singular observables

during the complex Langevin evolution, spoiling the correctness of Eq. (3.4).

4. Gauge cooling

It has been shown first for heavy quarks [7] that applying deterministic gauge transformations

Unν →U (G)
nν = GnUnνG−1

n+ν̂
(4.1)

with Gn ∈ SL(3,C) after each Langevin step can cure convergence to wrong expectation values
caused by the problems mentioned above. One could think that a gauge invariant theory should not
be influenced by (4.1), however the drift term Knν = ∑a Knνaλa transforms as

Knν [U (G)] = GnKnν [U ]G−1
n , (4.2)

and as a consequence the complex Langevin trajectory is altered. A detailed discussion of the
applicability of gauge cooling can be found in [8]. However, it is not guaranteed that if (3.4) was
violated in the first place, it can be restored using this additional method, in particular if (A), (B)
or both are still present.

The method called gauge cooling, since it is usually implemented by minimizing an SL(3,C)
gauge variant norm N by gradient descent [7]. Two cooling parameters are introduced: #cooling
iterations and cooling stepsize α , which has to be chosen adaptively if the gradient of the norm is
too large. In the following, we present the effects of gauge cooling using several different norms.

5. Results with unitarity cooling

The norm used most for the cooling procedure so far is the unitarity norm [7]

Nu = ∑
n,ν

tr
[
U†

nνUnν +
(
U†

nνUnν

)−1−2
]
. (5.1)

Minimizing (5.1) results in a gauge-equivalent configuration closer to SU(3) and counters (A)
during the CL evolution. Sometimes it is also defined without the second term, but we found no
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qualitative difference in the simulation results if at least 10 cooling steps with α = O(0.1) were
used.

The effect of this unitarity cooling on observables and their distributions was investigated in
[9] for 0+1d and 1+1d QCD. The main result was that one can observe a discrepancy with the
benchmark if the distribution of the fermion determinant includes the origin, i.e. singular drifts are
present (compare (B)), which was accompanied by skirts in the distributions of observables. This
behavior was particularly severe around the phase transition for light quarks, e.g. m = 0.1, µ ∈
[0.1,0.5]. For smaller and bigger values of the chemical potential and in the case of heavy quarks
(m > 1) for all µ values, unitarity cooling was able to push the determinant values away from the
origin and correct results were obtained.

A remaining question was the role and origin of the skirts in the observable distribution. To
this purpose, we extrapolated their fall-off to clarify whether insufficient cancellations in the tails
of the distribution are able to cause the discrepancies. In Fig. 1 this is shown exemplary for the
chiral condensate1

Σ =
1
V

Re trD−1 (5.2)

and we conclude that the skirts themselves are not responsible for the wrong values, but rather the
different position of the maximum of the distribution. Nevertheless, a broad distribution can be
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Figure 1: Incorrect uncooled simulation with polynomial fit on the skirt fall-off compared to cooled results,
which were checked to be correct for the used parameters: m = 0.1 at µ = 0.07.

used as an indicator for failure of the method, particularly if it drops slower than exponentially.
For a better understanding, we wanted to clarify the origin of the skirts and found that they are

not related to branch-cut crossings as proposed in [10], since they happen independently of the de-
terminant phase, as can be seen in Fig. 2, but correlate with small determinant values corresponding
to a singular drift, eg. explicitly for the chiral condensate via

detD = ∏
i

di ⇔ Σ =
1
V ∑

i
d−1

i . (5.3)

What is most surprising is that small determinant values can still occur in the absence of skirts, e.g.
in cooled simulations at µ = 0.07, meaning that the distribution of the eigenvalues di of the Dirac
operator is also affected by cooling as (5.3) still has to hold.

Since cooling the unitarity norm does not perform well enough in some parameter regions, we
also studied other cooling schemes, presented in the next chapter.

1We only look at the real part of Σ as the imaginary part vanishes on average.
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Figure 2: Scatterplots to illustrate uncorrelation between skirts an branchcut crossings (left) and different
correlation behaviors between skirts and small determinant values (middle, right).

6. New cooling schemes

6.1 Polyakov cooling

In 0+1d QCD one can rewrite the theory in terms of a single Polyakov line P = ∏t Ut0, also
replacing all gauge links in the corresponding unitarity norm:

N
(1d)

P = tr
[
P†P+

(
P†P

)−1−2
]
. (6.1)

This cooling worked extremely well [9] and therefore we tried to generalize it for higher dimensions
for which we have Polyakov lines Px = ∏t U(x,t)0 and we define the Polyakov unitarity norm by

NP = ∑
x

tr
[
P†

x Px +
(
P†

x Px
)−1−2

]
. (6.2)

However, since this definition is almost perfectly gauge invariant, minimizing only has an influence
on the first timeslice of the temporal gauge links, which was only enough in 0+1d, and therefore the
results are not changed perceptively compared to the uncooled case in 1+1d. It could be possible to
improve the outcome by modifying Eq. (6.2) further by inlcuding additional terms in the definition,
e.g. Wilson lines Pt = ∏x U(x,t)0 to account for the extra dimension or time shifted Polyakov lines
Px,τ = ∏t U(x,(t+τ) mod nt)0 as a way to increase the number of affected gauge links by the minimiza-
tion procedure, but nothing of this has been tested yet.

6.2 Antihermiticity cooling

Another idea for cooling is to enhance the antihermiticity of the Dirac operator [11]

D(µ)† =−D(−µ), (6.3)

which is broken for µ 6= 0 or non-unitary Unν ∈ SL(3,C). This property assures that at µ = 0 the
eigenvalues come in pairs ±iλ , resulting in a positive fermion determinant. The corresponding
norm is defined as

N†̄ = tr
[(

D+D†)2
]
=

1
2 ∑

n,ν
tr
[
e2µδν0U†

nνUnν + e−2µδν0
(
U†

nνUnν

)−1−2
]
+12V m2, (6.4)

where we used Eq. (2.2) to show that it is very similar to the unitarity norm, only including an
additional µ-asymmetry between the first and second term and an irrelevant offset. However, we
observed that this is not enough to change the results and determinant or observable distributions
compared to unitarity cooling. This is probably due to the fact that unitarity cooling with and with-
out the second term in the norm acts very similarly, as already mentioned, and therefore including
a prefactor in front of either of the two terms does not play a significant role at all.
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6.3 Maximum drift cooling

The latest proof of correctness of the complex Langevin method [4] only relies on the fact
that the probability of drifts with large magnitude is suppressed exponentially. The authors of [4]
therefore suggest to reduce the absolute value of the local maximum drift

Nd(n) = max
ν

tr
[
K†

nνKnν

]
(6.5)

by gauge transformations before the next Langevin update is carried out. For this, we have to use
adaptive α , because the drift values usually fluctuate quite strongly.

In contrast to the cooling schemes above, these results somehow depend on #cooling iterations,
although we observe no unusual behavior of the norm (6.5) when cooling a single configuration
excessively, see Fig. 3. For approximately 10 cooling iterations between the Langevin updates,
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Figure 3: Effect of cooling Nd(n) for small quark mass m = 0.1 on the chiral condensate (left) and averaged
norm (middle), as well as on a single configuration (right).

the method worked best, but not better than unitarity cooling, i.e. we still receive incorrect results
for e.g. µ = 0.25. Unfortunately, it is also more expensive. We also tried to cool (5.1) and (6.5)
simultaneously, but we could not observe any improvements.

7. Effect of the gauge action

As a supplement to [9], we present some results with gauge action (S =− logdetD+SG)

SG = β ∑
n

∑
ν<ν ′

(
1− 1

2Nc
tr
[
Unνν ′+(Unνν ′)

−1]) , Unνν ′ =UnνU(n+ν̂)ν ′(Unν ′U(n+ν̂ ′)ν)
−1

for β > 0. The positive influence on incorrect results by increasing β can be seen in Fig. 4. Unfor-
tunately, also the computational effort scales linearly with β , as the stepsize ε has to be reduced in
order to keep the statistical error constant.

8. Conclusions

Gauge cooled complex Langevin simulations produce correct results for heavy quarks. How-
ever, for light quarks, all considered gauge cooling schemes are insufficient to retrieve the correct
values in a significant range of the chemical potential around the phase transition, as the validity
conditions of the complex Langevin method are still not met.

Considering the gauge action improves the results for high β , but the problem at strong cou-
pling still remains.
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Figure 4: Comparison of chiral condensate results from CL and phase-quenched reweighting as a bench-
mark for µ = 0.07 (left) and µ = 0.25 (right). In the latter case where CL fails without including the gauge
action, increasing β has an improving effect and the results slowly converge to the correct ones.

However, it should be possible to increase the applicability range of the CL method further by
combining it with other methods such as reweighting [12, 13] or Taylor expansions from correct
trajectories at µ > 0.
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