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We determine the masses and pseudoscalar decay constants of D and Ds mesons employing lattice
QCD with non-perturbatively O(a) improved Wilson quarks and a tree-level Symanzik-improved
gauge action. Our analysis is based on the large-volume Nf = 2+1 ensembles using open bound-
ary conditions, generated within the CLS effort. The status of results presented here covers two
lattice spacings, a ≈ 0.0854 fm and a ≈ 0.0644 fm, and pion masses varied from 420 to 200
MeV. We also report on our implementation of distance preconditioning for the calculation of
heavy quark propagators and discuss the impact of the resulting accuracy improvements on the
extraction of charmed meson masses and decay constants. This is part of a continuing analysis by
the RQCD and ALPHA Collaborations, aiming at a stable continuum extrapolation using several
lattice spacings. To extrapolate to the physical masses, we follow both, the (2ml +ms) = const.
and the ms = const. line in parameter space.
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Charmed pseudoscalar decay constants on Nf = 2+1 CLS ensembles with open boundaries

1. Introduction

Recent experiments at the LHC, BEPC II and KEK supply us with an abundance of spectroscopic
information about charmed systems with ever improving measurements of the leptonic decay rates
of D and Ds mesons. In order to fully exploit this progress on the experimental side and to convert it
into an amended determination of the CKM matrix entries

∣∣Vcq
∣∣, q = d,s, it must be complemented

on the lattice QCD side with a more precise computation of the associated low-energy hadronic ma-
trix elements, characterised by the pseudoscalar decay constants fD and fDs , respectively. Charmed
systems are challenging because of systematics, in particular, cutoff effects are generally signifi-
cant. Therefore, all the more important is a fully controlled continuum extrapolation, a→ 0. In
this proceedings we describe our ongoing efforts in calculating the charmed pseudoscalar decay
constants.

2. CLS ensembles and general computational setup

Our analysis is based on the Nf = 2+ 1 Coordinated Lattice Simulations (CLS) ensembles gen-
erated with non-perturbatively O(a) improved Wilson-Sheikholeslami-Wohlert (clover) fermions
and the tree-level improved Lüscher-Weisz gauge action, employing the open-source package
openQCD [1]. Ensembles have been realised with lattice spacings in the range of a ≈ 0.0854−
0.039fm (β = 3.4−3.85), aiming at a controlled extrapolation to the continuum limit [2 – 4]. Sim-
ulating with a < 0.05 fm is possible through the use of open boundary conditions in the temporal
direction, which avoids the problem of topological freezing as the continuum limit is approached
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Figure 1: The light and strange quark masses realised for β = 3.4 lattices as indicated by the square of the
pion mass versus the kaon-pion mass difference, 2m2

K−m2
π , in units of t0.
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trajectory ensemble κl κs Lmπ Nt ×N3
s

mπ

MeV
mK

MeV NMD

β = 3.4 [a = 0.0854(15) fm],
√

8t0/a = 4.852(7)

m = msym

H101 0.13675962 0.13675962 5.8 96×323 422 422 8000
H102 0.136865 0.136549339 4.9 96×323 356 442 7988
H105 0.13697 0.13634079 3.9 96×323 282 467 11332
C101 0.13703 0.136222041 4.6 96×483 223 476 6208

m̂s = m̂phys
s

H107 0.136945665908 0.136203165143 5.1 96×323 368 549 6256
H106 0.137015570024 0.136148704478 3.8 96×323 272 519 6212
C102 0.1370508458 0.136129062556 4.6 96×483 223 504 6000

β = 3.55 [a = 0.0644(11) fm],
√

8t0/a = 6.433(6)

m = msym

H200 0.137 0.137 4.4 96×323 418 418 8000
N203 0.13708 0.136840284 5.4 128×483 345 441 6172
N200 0.13714 0.13672086 4.4 128×483 283 461 6800
D200 0.1372 0.136601748 4.2 128×643 199 479 4000

m̂s = m̂phys
s

N204 0.137112 0.136575049 5.6 128×483 351 544 2000
N201 0.13715968 0.136561319 4.5 128×483 284 522 6000
D201 0.137207 0.136546436 4.1 128×643 198 499 4312

Table 1: Details of the ensembles analysed so far for the two trajectories to the physical point, keeping m
fixed to the value at the symmetric point (m = msym) and keeping the renormalised strange quark mass (m̂s)
approximately equal to the physical value (m̂phys

s ). The light and strange quark hopping parameters are
denoted κl and κs, respectively. The lattice volumes Nt ×N3

s , the pion (mπ ) and kaon (mK) masses and the
statistics given by the number of molecular dynamics units (NMD) are also indicated.

[5, 6]. Readers, who are interested in the details regarding the algorithmic setup, are referred to
Ref. [2]. Here, we only mention the use of twisted-mass reweighting for the two mass-degenerate
light fermions [7], which prevents instabilities in the HMC algorithm due to near-zero modes of
the Dirac operator, and the use of the rational approximation for simulating the strange quark.
These algorithmic choices mean that the computation of observables, such as correlation functions,
require reweighting, see Section 5.

So far we have analysed lattices with β = 3.4 and 3.55 corresponding to a = 0.0854(15)
and 0.0644(11) fm, respectively [3]. For each β -value, the physical point is approached in the
light and strange quark mass plane following 2 trajectories — (i) keeping the average lattice quark
mass (m = (2ml +ms)/3 1) fixed such that the sum of the renormalised quark masses is constant
up to O(a) effects, and (ii) keeping the renormalised strange quark mass approximately constant.
Figure 1 displays the two trajectories for β = 3.4, where the pion masses are varied from 422 down
to 223 MeV. Simulations along the m constant line, first proposed by the QCDSF Collaboration [8],
start from the ml = ms = msym symmetric point with the strange (light) quark mass becoming
heavier (lighter) towards the physical point. The quark mass dependence of hadron observables
is given by Gell-Mann-Okubo expansions in powers of ms−ml or, alternatively, can be described
by SU(3) chiral perturbation theory (ChPT). For the second trajectory, SU(2) ChPT applies. See
Ref. [3] for details on how an almost constant renormalised strange quark mass was achieved in
this case. As will be demonstrated in Section 6, having two trajectories available enables the

1Here we refer to the vector Ward identity masses, mq=l(ight),s = (1/κq− 1/κcrit)/(2a), where κcrit is the critical
hopping parameter value at which the axial Ward identity mass in the symmetric limit, ml = ms, vanishes.
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extrapolation to the physical point to be tightly constrained.
Table 1 provides further details of the ensembles entering our analysis. They exhibit large spa-

tial volumes with high statistics; in particular, mπL & 4 (L = Nsa) is satisfied by all ensembles, and
more than 4000 molecular dynamic units NMD have been generated in each case (with the exception
of ensemble N204, which is still in production). For open temporal boundaries, one needs large
physical time extents, since discretisation effects and the propagation of scalar particles into the
bulk mean that, in general, timeslices close to the boundaries need to be discarded. The lattice spac-

ing is set by the gradient (resp. Wilson) flow scale t0, where we use
√

8tphys
0 = 0.4144(59)(37)fm,

as determined by BMW Collaboration [9], together with
√

8t0/a-values from Refs. [2, 3]. Using
the pion and kaon decay constants to set the scale, is discussed in Ref. [4]. The physical point is
defined employing the combinations

φ4 = 8t0

(
m2

K +
1
2

m2
π

)
and φ2 = 8t0m2

π , (2.1)

together with the pion and kaon masses in the isospin limit, mπ = 134.8(3)MeV and mK = 494.2(4)
MeV, taken from the FLAG report [10]. We note that the starting value for the m = const. trajectory
at the symmetric point, msym, was fixed by tuning φ4 = 1.15, slightly above the physical value of
φ

phys
4 = 1.117(38). This choice was motivated by expected discretisation and O

(
(ms−ml)

2
)

effects
in φ4 along the trajectory. In addition, the computation of t0 involved in this tuning procedure was
performed at unphysical quark mass. In the final analysis, the trajectory may be found to slightly
miss the physical point. Mistunings of this kind, however, can still be accounted for later by slightly
adjusting the results through reweighting or via a Taylor expansion (following Ref. [4]). We leave
these considerations for future study.

3. Definition of observables

Let us explain our notation and the observables analysed. The pseudoscalar decay constants fD and
fDs are defined via the matrix elements of the axial vector current between D and Ds meson states
|D(p)〉 and |Ds(p)〉 at momentum p, respectively, and the vacuum, viz.

〈0
∣∣Alc

µ

∣∣D(p)〉= i fD pµ , 〈0
∣∣Asc

µ

∣∣Ds(p)〉= i fDs pµ , (3.1)

where Aqc
µ = qγµγ5c for quark flavours q= l(ight),s. In order to reduce leading discretisation effects

to O(a2) in the lattice simulation, we employ the improved axial operator

Aqc,I
µ = Aqc

µ +acA
1
2
(
∂µ +∂

∗
µ

)
Pqc. (3.2)

The pseudoscalar interpolator is given by Pqc = qγ5c. The improvement coefficient cA has been
determined non-perturbatively in Ref. [11]. Due to the breaking of chiral symmetry by Wilson-type
fermions, the axial current must be renormalised in order to ensure that the continuum axial Ward
identity (

Aqc
µ

)R
= ZA

[
1+a

(
bAmqc +3b̃Am

)]
Aqc,I

µ +O(a2) (3.3)

is satisfied, where the (bare) vector Ward identity quark mass combinations read:

mqc =
1
2
(
mq +mc

)
, 3m = ms +2ml. (3.4)

3
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The renormalisation factor ZA is taken from the non-perturbative evaluation of Ref. [12]. The
coefficient bA has been determined non-perturbatively in Ref. [13]. The same authors find b̃A to
be consistent with zero in a preliminary analysis at β = 3.4. In order to perform a consistent
analysis for both β = 3.4 and 3.55, at present, we neglect the b̃Am-term. Since the mass dependent
corrections in Eq. (3.3) are anyway dominated by the term involving mqc, this choice does not
introduce a significant systematic uncertainty.

In the following, we restrict the analysis to zero-momentum D and Ds mesons, for which
only the temporal component of the axial current needs to be considered. The matrix elements in
Eq. (3.1) are extracted from the following two-point correlation functions:

CA(x0,y0) =−
a6

L3 ∑
~x,~y
〈Aqc,I

4 (x)(Pqc(y))†〉, CP(x0,y0) =−
a6

L3 ∑
~x,~y
〈Pqc(x)(Pqc(y))†〉, (3.5)

with the source and sink interpolating operators inserted at timeslices y0 and x0, respectively. For
sufficiently large time differences x0−y0 and T −x0, for a lattice of physical time extent 2 T , these
correlators behave as [4]

CA(x0,y0)≈
f bare
qc

2
A(y0)e−mDq (x0−y0), CP(x0,y0)≈

|A(y0)|2

2mDq

e−mDq (x0−y0), (3.6)

where mDq is the mass of a pseudoscalar meson containing a charm quark and an anti-quark of
flavour q= l,s. The (unrenormalised) lattice decay constant, f bare

qc , corresponds to 〈0|Aqc,I
4 |Dq〉/mDq ,

while the source-time dependent amplitude A(y0) encapsulates the matrix element of the pseu-
doscalar operator 〈0 |Pqc|Dq〉 and effects arising from the boundary close to the source. For y0

sufficiently far from the boundary, A(y0) = 〈0 |Pqc|Dq〉 holds.
In this preliminary analysis we place the source at large enough times such that boundary

effects can be neglected. In order to gain statistics, three sources are chosen corresponding to
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Figure 2: The effective mass of the pseudoscalar D meson as a function of (x0− y0)/a for ensemble H105
with T/a = 95. Three source positions were used: y0/a = 30, 47 and 65. The correlation function of
the forward-propagating meson for y0 = 30a is averaged with that of the backward-propagating meson for
y0 = 65a, yielding the effective mass indicated by the red “+” symbols. For y0/a = 47, the forward- and
backward-propagating mesons are averaged to give ameff shown as the blue crosses.

2For lattices with Nt points in temporal direction, T = (Nt −1)a denotes the physical time extent.
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y0/a = 30, 47 and 65 for ensembles with T/a = 95 and β = 3.4 (see Table 1), while for β = 3.55,
the sources are placed at y0/a = 27, 47 and 68 for ensembles with T/a = 95, and at y0/a = 46,
63 and 81 for those with T/a = 127. Ground-state dominance at small source-sink separations is
realised by employing Wuppertal smearing [14, 15] with APE-smoothed links [16] to the pseu-
doscalar source and sink interpolators. Figure 2 displays typical effective masses for the D meson
derived from the correlation function CP(x0,y0) for the different source positions as a function of
the sink-source time separation. For small x0− y0, the results from the source in the center of the
lattice (y0/a = 47) are compatible with those from the sources closer to the boundary (i.e., from the
forward-propagating meson for y0 = 30a and the backward-propagating meson for y0 = 65a), con-
sistent with the absence of boundary effects. However, the latter are clearly evident for y0 = 47a,
as the sink time nears the boundary, while for y0 = 30a and 65a the signal deteriorates before
significant boundary effects are seen.

The pseudoscalar decay constant is extracted by fitting CA(x0,y0) and CP(x0,y0) to the func-
tional forms given in Eq. (3.6), with A(y0) independent of y0. The fitting procedure is discussed
in Section 5. Alternative approaches, for instance, employing the axial Ward identity (i.e., PCAC)
quark mass [17], will also be considered in the future. We remark that for pseudoscalar mesons
containing a quark and an anti-quark of the same flavour, for which the statistical noise of the cor-
relators is constant with varying source-sink separation, one can also place the source close to the
boundary and consider ratios such as

f bare
qq (x0,y0) ∝

√
CA(x0,y0)CA(x0,T − y0)

CP(T − y0,y0)
, (3.7)

see Ref. [18] for details. When extracting the decay constant from the correlation functions, we
wish to maximise the time range for the fit. However, there is a well known problem with nu-
merical accuracy towards large time separations, when computing correlation functions involving
propagators of heavy quarks. This issue is discussed in the next section along with the distance
preconditioning procedure of Ref. [19], which can be adopted to alleviate such difficulties.

4. Distance preconditioning of heavy quark propagators

4.1 Motivation for distance preconditioning

When numerically inverting the Dirac operator, one has to pay special attention to the quality of
the obtained solutions. Internally, the solver routine checks if the condition∣∣∣∑

y
(D[U ]+m0)x,y Sn(y)−ηt(x)

∣∣∣< rgl (4.1)

is satisfied, where D[U ] is the discretized lattice Dirac operator, m0 the bare quark mass in lattice
units and Sn(y) the approximate solution at the n-th iteration of the solver. ηt(x) denotes a source
located on a single timeslice t, while rgl is the global residuum, i.e., indicating the numerical accu-
racy one likes to achieve. Contributions to the norm above are negligible for heavy quarks, if one
considers large time separations between the source y0 and the sink x0, because of the exponential

5
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decay of correlation functions ∝ exp(−m0|y0− x0|). Solutions for large time extents thus become
increasingly inaccurate in this case.

In order to improve the overall precision in our charm quark propagator computations, we
have implemented the so-called “Distance Preconditioning” (DP) technique, first proposed in [19].
Rather than modifying the Dirac operator directly, as it was done in the original paper by de Divitiis
et al., we included this preconditioning in the Dirac operator inversion via multiplication with a
diagonal matrix P,

P =



p1 0 . . . . . . 0
0 p2 0 . . . 0

0 0
. . . 0 0

0 . . . 0
. . . 0

0 . . . . . . 0 pT


, (4.2)

with pi = exp
(

α0 · |y0− x(i)0 |
)

, corresponding to timeslice i, and a (control) parameter α0. P acts as
unity matrix in spin, color and spatial coordinates. By this procedure, timeslices far away from the
source are enhanced by a large exponential factor, which balances the rapid decay of the correlation
function and ensures an accurate computation of the propagators even in the case of large quark
masses (in lattice units) and very large time extents.

For our implementation, instead of numerically solving the un-preconditioned system

AS = η with A = ∑
y
(D[U ]+m0)x,y, (4.3)

we multiply it with P from the left and rewrite (PAP−1)(PS) = (Pη) as A′S′ = η ′. The inversion to
calculate the solution S′ = PS of the preconditioned system then becomes numerically much more
stable, and to recover the original solution S, it suffices to scale S′ back with P−1.

4.2 Numerical tests

We performed several exploratory tests on three different subsets of the CLS ensembles H105,
H200 and U101. These low-statistic analyses (usually 25 to 200 configurations were included in the
correlator measurements) served to explore the validity of the distance preconditioning technique
for two different values of β and different quark masses. The U101 subset was chosen because of
its larger temporal lattice extent of T/a = 127.

Since there are contaminations from excited states near the source and excitations close to the
boundary, the two-point functions defined in (3.5) have the general form

CA,P(x0,y0) = A1(y0)e−mDq (x0−y0)+A2(y0)e−m′(x0−y0)+B1(y0)e−(E2Dq−mDq )(T−x0+y0)+ . . . , (4.4)

where the first term mimics the ground state, the second one represents the first excited state with
mass m′ and the third term is the first excited boundary state with E2Dq ≈ 2mDq (see Ref. [4]). As
one moves farther away from the boundary, the excited states become strongly suppressed, and the
behaviour of the two-point functions is governed by the first term.

First tests of the distance preconditioning method were performed employing the normal-
equation variant of the conjugate gradient solver (CGNE), because of its simplicity and numerical

6
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robustness. Figure 3 illustrates the numerical difficulties, as the correlator CP(x0,y0) deviates from
the expected behaviour (i.e., linear on a logarithmic scale) for large time separations |x0− y0|.
These results were obtained on ensemble H105 at β = 3.4 with the correlation function averaged
over two source positions y0/a = 1 and T/a−1 (DP-results were always generated utilising these
source positions). The heavy-heavy correlator is evaluated for κ = 0.124503≈ κcharm. With a loose
global residual of rgl = 10−6 the results for the unmodified CGNE solver (in blue) show an irregular
behaviour already around timeslice ≈ 26. While this can still be partly improved via choosing
a far smaller residual of order 10−12 (in green), it is obvious that brute-force methods become
unfeasible on lattices with larger time extent. The outcome can, however, be greatly improved
by distance preconditioning: While the results for the DP-modified CGNE solver with rgl = 10−6

and control parameter α0 = 0.4 (red) already yield a modest improvement, those for rgl = 10−12

(black) show a smooth and nearly perfect exponential decay over the whole range such that the
effective pseudoscalar meson mass ameff(x0,y0) = ln

(
CP(x0,y0)

CP(x0+a,y0)

)
can be extracted along a wide

plateau (the slight increase in ameff(x0,y0) at x0/a > 85 is likely due to boundary excited states
back-propagating into the bulk).
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Figure 3: Two-point correlation function CP(x0,y0) (left panel) and effective mass ameff(x0,y0) (right panel)
for an exploratory run on the H105 subset. Shown are the results for the unmodified CGNE solver with global
residual rgl = 10−6 (blue) and rgl = 10−12 (green), as well as those for the DP-modified CGNE solver with
rgl = 10−6,α0 = 0.4 (red) and rgl = 10−12,α0 = 0.4 (black).

In order to gain in computational speed, we also implemented the DP-method into another
solver routine, namely, the domain-decomposition (SAP) preconditioned generalized conjugate
residual solver (GCR). The left panel of Figure 4 shows the results for the local residual, defined
as rloc(x0,y0) =

|A(x0,y0)S(x0,y0)−ηt(x0,y0)|
|S(x0,y0)| , for three different solver routines. While the CGNE solver

(blue) shows substantial deviations between source ηt(x0,y0) and solution S(x0,y0), this is neither
the case for the DP-modified CGNE solver residual (red) that stays almost constant over the whole
time extent, nor the DP-modified SAP GCR solver one (black), which stays well below rloc = 10−8.
The right panel shows a representative result for H200 with β = 3.55 and κl = κs = msym. If κcharm

is chosen close to a value corresponding to 1
2 amheavy-heavy

eff , one can afford to set the global residual
to even larger values, which helps to decrease the computational cost of the inversion further.

Finally, Figure 5 highlights the influence of DP on Ds meson (left panel) and D meson (right
panel) effective masses. While the light and strange quark systems were solved in all cases by a
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Figure 4: Left panel: Local residual rloc(x0,y0) plotted against time in lattice units. Shown are the results
for the unmodified CGNE solver with global residual rgl = 10−12 (blue), the DP-modified CGNE solver with
rgl = 10−6,α0 = 0.6 (red) and the DP-modified SAP GCR solver with rgl = 10−6,α0 = 0.6 (black). Right
panel: Two-point correlator CP(x0,y0) on subset H200 at β = 3.55. Solver routine: DP-modified SAP GCR
with rgl = 10−4,α0 = 0.55.

SAP-preconditioned GCR solver with local deflation (DFL), the charm quark inversion was per-
formed either in the same way or via the DP-modified SAP GCR solver (red) for comparison. In
the Ds meson case, an increase in accuracy is clearly visible, as the plateau region extends farther
into the bulk. For the D meson, the benefits of the DP-technique are less pronounced. Further
studies based on higher statistics and devoted to finding optimal choices for rgl and α0 are certainly
needed, given the promising results of our first numerical tests.
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Figure 5: Effective mass ameff(x0,y0) in lattice units for heavy-strange (left panel) and heavy-light combi-
nations (right panel); H105, based on 50 configurations per simulation run. The charm channel solutions
were obtained with an unmodified DFL SAP GCR solver (blue) with rgl = 10−11 and the DP-modified SAP
GCR solver (red) with rgl = 10−4,α0 = 0.7. Solutions for light and strange quarks stem from the unmodified
DFL SAP GCR solver with rgl = 10−11.

5. Analysis details

Since the tests of the distance preconditioning technique and its final implementation within our
correlator measurement setup are still on-going, the results we present below were generated by
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solving the un-preconditioned linear system (Eq. 4.3) with a decreased residual (Eq. 4.1) of rgl =

10−15 in the charm and rgl = 10−11 in the strange and light quark propagator computations. With
this choice of (global) residual for the charm quark inversion, the numerical problems discussed
in the previous section can be seen in charmonium two-point functions at distances of around 60
timeslices from the source.

As mentioned in Section 2, we use twisted-mass reweighting for the light quarks and the
rational approximation for the strange quark in the HMC. To correct to the proper distribution, we
must reweight the physical observables (in this case, the two-point functions) with the associated
reweighting factors:

〈O〉= 〈OW0W1〉W
〈W0W1〉W

. (5.1)

The twisted-mass (W0) and rational approximation reweighting (W1) factors are defined in Ref. [2]
(Eqs. (3.2) and (3.5), respectively).

The analysis of the two-point functions proceeds by first making use of time-reversal symme-
try and averaging CX(x0,y0) and CX(T − x0,T − y0) (X = A,P, see Eq. 3.5) for the three source
positions, e.g. y0 = 30a,47a and 65a for T/a = 95 at β = 3.4. In other words, we average the
forward-propagating part of y0 = 30a with the backward-propagating branch of y0 = 65a, while for
correlators with y0 = 47a, we average the forward and backward propagating mesons. To extract
the lattice pseudoscalar decay constant, we fit the averaged correlators for CA and CP simultane-
ously (i.e., four correlators in total) to the single-exponential forms in Eq. 3.6. Of course, this
functional form is only valid in a region, where contamination from excited states has fallen be-
low the noise and boundary effects as well as the numerical problems associated with the charm
quark inversion are absent. As discussed in Section 3, the values of y0 have been chosen to be
sufficiently far away from the boundary. Effects from the opposite boundary and the numerical
inversion problems are not significant when fixing the end point of the fit range to xmax

0 − y0 . 25a
for the D meson and xmax

0 −y0 . 30a for the Ds meson. In order to select the starting point of the fit
interval, xmin

0 , we first estimated the contribution of the excited states by fitting the correlators to a
double-exponential form. xmin

0 is then fixed to the point at which excited state contributions amount
to less than one quarter of the statistical error of the correlation function. For example, for CP,

|A′|2 e−M′(xmin
0 −y0)

2M′
<

1
4

∆CP(xmin
0 ,y0), (5.2)

where A′ and M′ denote the amplitude and the mass of the first excited state, respectively, as de-
termined by the fit, and ∆CP denotes the statistical error of the correlator. Figure 6 illustrates this
procedure. The lattice pseudoscalar decay constant is then extracted from a combination of the am-
plitudes of CA and CP (resulting from single-exponential fits between xmin

0 and xmax
0 ), in accordance

with Eq. 3.6.
As the charm quark is partially quenched in our setup, we need to fix the corresponding hop-

ping parameter (κcharm) in our analysis. In a first step, on a subset of the available statistics, κcharm

was estimated from the charmonium 1S spin-averaged mass M(1S) =
(
mηc +3mJ/Ψ

)
/4. In order

to maintain flexibility for possible adjustments later, the correlation functions were calculated with
full statistics at two values of the hopping parameter, straddling the target κcharm; these values were
chosen by allowing the lattice spacing to vary by ±2%. κcharm was then determined on this full set
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Figure 6: Determination of the fit range: the effective masses of the pseudoscalar charmonium (left) and D
meson (right) as a function of the source-sink separation (x0− y0)/a for the H105 ensemble. The CP corre-
lators are averaged over y0 = 30a (forward-propagating) and 65a (backward-propagating), where T/a = 95.
A double-exponential fit (red shaded region) is shown with (xmin

0 ,xmax
0 ) = (a,47a) (left) and (a,24a) (right).

These fits are then used to determine the fitting range for the single-exponential fits (see text), indicated by
the blue shaded regions.

by interpolating M(1S) linearly in the inverse of the hopping parameter to the physical point, as
given by the central value for a. A linear interpolation is valid, since both κ-values for the “heav-
ier” and “lighter” charm quark are close enough to the physical value. Employing the charmonium
1S mass introduces an unknown (although expected to be small) uncertainty, since we neglect the
disconnected diagrams and possible flavour mixing. As an alternative, free from these system-
atics, we also determined κcharm utilising the spin-flavour-averaged 1S meson mass combination
MX =

(
6mD∗+2mD +3mD∗s +mDs

)
/12 along the m = const. line, and the spin-averaged Ds mass

along the m̂s = const. line. So far, the results for the interpolated decay constants, using κcharm

fixed via either M(1S) or MX and mDs , were consistent within one standard deviation. In the future,
we plan to base our final determination of the hopping parameter of the (valence) charm quark on
MX and mDs .

6. Preliminary results

The results presented in this section are preliminary and systematic errors arising from the un-
certainty in the lattice spacing, fixing the charm quark mass, the renormalisation procedure, etc.
are neglected. The statistical errors are estimated using a bootstrap analysis employing 500 sam-
ples. Let us first inspect the ratio of decay constants, fDs/ fD, for which the renormalisation fac-
tor (ZA) drops out and also the contributions from the O(a) improvement terms partially cancel (see
Eqs. (3.2) and (3.3)). Figure 7 shows our results for the ratio as a function of m2

π for β = 3.4 and
3.55 (corresponding to a = 0.0854fm and 0.0644fm, respectively), consult Table 1 for the values
of mπ for each ensemble. We performed chiral extrapolations linear in m2

π along the trajectories of
constant m and m̂s = m̂phys

s simultaneously, enforcing the value at the physical point to be the same
in both cases. As the dominant discretisation artefacts are of O(a2), we show the results for the
two β -values plotted against a2 in Figure 8. The comparison with the recent FLAG averages for
Nf = 2+1 and Nf = 2+1+1 [10] is promising.
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Figure 7: Ratio fDs/ fD for β=3.4 (left panel) and β=3.55 (right panel). The blue points refer to data from
ensembles along the m = const. line, whereas red points symbolize data along the ms = const. trajectory.
We perform a linear chiral extrapolation simultaneously along both trajectories (orange- and blue-shaded
regions), enforcing the value at the physical point (dashed vertical line) to be the same.
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Figure 8: Our preliminary results for fDs/ fD for β=3.4 and 3.55 as a function of a2, compared to the recent
averages for Nf = 2+ 1 and Nf = 2+ 1+ 1 from FLAG [10]. Note that the errors on our results are only
statistical at the moment.

The individual pseudoscalar D and Ds meson decay constants are displayed in Figures 9
and 10. These depend on the renormalisation, and O(a) improvement has a big impact. If we
focus on the Ds meson, e.g., including the bAmqc-improvement term in Eq. (3.3) causes an upward
shift of the physical-point value of fDs of about 35% for β = 3.4 and 19% on the finer β = 3.55
lattice. Similar shifts occur for fD. Most of the shift is due to the presence of the charm quark mass
in mqc. In contrast, for the ratio fDs/ fD there is only a 1% shift when adding this improvement
term, in line with the expectation that the impact of the charm quark largely cancels here. In the
future, the chiral extrapolations will be investigated in more detail and, once results at additional
lattice spacings have been analysed, a careful continuum limit extrapolation will also be performed.

7. Conclusions and outlook

Our ongoing simulations in the charmed meson sector of Nf = 2+1 lattice QCD address the com-
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Figure 9: fD for β=3.4 (left panel) and β=3.55 (right panel) as in Figure 7.
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Figure 10: fDs for β=3.4 (left panel) and β=3.55 (right panel) as in Figure 7.

putation of the leptonic decay constants fD and fDs . To reach a precision high enough to be relevant
for theory inputs to global analyses in flavour physics phenomenology, among the next necessary
steps are: (i) increase of statistics, inclusion of further ensembles and correcting the results for
possible small mismatches of the constant physics condition, enabling a stable joint chiral and con-
tinuum extrapolation; (ii) a full budget of (statistical and systematic) errors, also accounting for
their correlations. This will be carried out in the future.
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