PROCEEDINGS

OF SCIENCE

Hierarchically deflated conjugate residual

Azusa Yamaguchi*f
University of Edinburgh
E-mail: ayamaguc@staffmail.ed.ac.uk

Peter A Boyle
University of Edinburgh
E-mail: paboyle@ph.ed.ac.uk

We present a progress report on a new class of multigrid solver algorithm suitable for the solution
of 5d chiral fermions such as Domain Wall fermions and the Continued Fraction overlap. Unlike
HDCG [1], the algorithm works directly on a nearest neighbour fine operator. The fine operator
used is Hermitian indefinite, for example I'sDy,, ¢, and convergence is achieved with an indefinite
matrix solver such as outer iteration based on conjugate residual. As a result coarse space repre-
sentations of the operator remain nearest neighbour, giving an 8 point stencil rather than the 81
point stencil used in HDCG. It is hoped this may make it viable to recalculate the matrix elements

of the little Dirac operator in an HMC evolution.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

*Speaker.
TFunded by Intel Parallel Computing Centre.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/


mailto:ayamaguc@staffmail.ed.ac.uk
mailto:paboyle@ph.ed.ac.uk

HDCR Azusa Yamaguchi

1. Introduction

Despite the development of revolutionary new multilevel solver algorithms for Wilson Fermions
[3, 4, 5, 6, 7] lying nearly ten years in the past, the extension of the approaches to all fermion ac-
tions remains somewhat piecemeal. The generalisation to improved Wilson (clover) fermions was
made rather rapidly[8], and subsequent variations [9, 10, 11] have included more efficient subspace
setup.

The extension domain wall fermions[13, 14] has been studied[12] and an approach made to
give a substantial acceleration for valence analysis based on the red-black preconditioned squared
operator[1]. The stencil for the squared operator contains all points with taxicab norm less than
four, giving 321 points. This has the result that approach is unnattractive for gauge evolution code
where, even if the subspace quality can be preserved along an HMC trajectory, the reevaluation of
the matrix elements of the little Dirac operator on each timestep in the integrator, for O(50) vectors
in the subspace requires naively 15000 matrix multiplies.

Even admitting a constraint, such as a minimum block size of 4, the squared operator stencil
only reduces to 81 points[1]. It is clear that in order to make a practical algorithm for accelerating
HMC evolution with domain wall Fermions we must escape the constraint that the algorithm work
on the squared operator, and in order to do this we must first understand why to date only solvers
making use of the squared operator have been successful for domain wall Fermions.

2. Spectrum of domain wall fermions

The spectrum of the 5d domain wall fermion operator is illustrated in figure 1. The spectrum
for an appropriate negative 5d mass completely encircles and violates the folklore present in numer-
ical analysis called the half-plane condition|16]. There is a fundamental reason for this folklore: in
the infinite volume the spectrum will become dense, and the Krylov solver is then being asked to
form an (analytic) polynomial approximation to % over an open region encircling the pole. It is im-
possible to reproduce the phase winding around zero with an analytic function and indeed one can
show that minimising the mean square error of a fixed radius circle gives zero for all polynomial
coefficients.

In the case of Conjugate Gradient on the Normal Equations (CGNE), which is used to date
in RBC-UKQCD domain wall Fermion evolution, the multiplication of each eigenvalue by its
conjugate in solving

M ;cMPcW =N

places the phase behaviour under control and reduces the problem to a real spectrum, albeit with a
squared range of eigenvalue magnitudes.
In the discrete spectrum, finite volume case, we can consider a toy models which also illustrate

the problem. If the spectrum consists of N eigenvalues A = ¢'27K/N

the conjugate gradient will only
converge with an N-term polynomial, which can be analytically arrived at by Gaussian elimination
for small V.

In this paper, we propose to solve the phase problem using ys Hermiticity, without squaring the

operator, leaving the coarse space representation of the operator still nearest neighbour. Since the
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sparsity pattern is preserved this will represent the first true multigrid for five dimensional chiral

fermions.
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Figure 1: Left: The complex eigenvalue spectrum of the Wilson operator on a 4* quenched configuration
with § = 5.6. This figure was produced in reference [15] and we simply reuse the figure here for convenience
to illustrate the nature of the spectrum. With a negative Wilson mass of order 1.5, as is introduced in the
kernel of chiral fermions, the spectrum is shifted and encircles zero. In five dimensional domain wall and
related approaches a five dimensional Wilson term is introduced, without gauge links in the fifth direction,
and the “hamburger” picture is repeated with spectrum contained in 0 < RA < 10 and five “circles”. Right:
an example of an O(500) Chebyshev low-pass filter, shifting the range of the Chebyshev to give exponentially
small oscillations around zero between [Acyt, Amax), With a five order of magnitude enhancement of low
modes with A < Agy.

3. Application to domain wall fermions

We consider two classes of approach for chiral fermions following the nomenclature of ref.
[17]. In the Cayley form, the Hermitian indefinite operator for domain wall fermions (and Mobius
fermions with ¢ =0, b #£ 1) is

Hgyr = YsRsDgyr = UsDay s

Meanwhile, the continued fraction form for the standard overlap Hy kernel is already Hermitian
indefinite, taking a form that is also appropriate:
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These operators are nearest neighbour and preserve sparsity in a coarse space, but give rise to a
Hermitian indefinite spectrum. In the infinite volume the spectrum will be dense, real and sym-
metrical about the origin. From the perspective of a Krylov solver the polynomial approximation
P(A) ~ % must be made over a the subset real line A € [—Amax, —Amin] U [Amins Amax]

Such a spectrum succumbs easily to the conjugate residual algorithm, which relaxes the Her-
mitian positive definite constraint of conjugate gradients to only Hermitian indefinite. We will use
variants of conjugate residuals as the basis of the outer fine matrix iteration. Regarding the relative
efficiency, it is worth to note that we create a Krylov space that strictly contains the CGNE Krylov
space (spanned by every second term).

Py(D'D)D' = Py(T'sDT'sD)ysDys C Pay i1 (Hawy) Vs = Pon11(TsD) s

Further, since either on average or in the infinite volume, the spectrum will be symmetrical about
zero, the even terms cannot contribute to an approximation of the (odd) function % and the in this
limit the iteration should converge with an identical number of applications of the nearest neighbour
fermion operator as unpreconditioned CGNE. This rule is observed to be almost exactly true even
on 163 configurations.

4. Two level preconditioner

To introduce a Krylov process as a multigrid preconditioner, we use variable preconditioned
GCR as the outer iteration. Since this is a stadard algorithm we do not document it in the interests
of brevity. Multigrid may now introduced as the Preconditioner. We have tried several approaches
to define the low mode vectors used in coarsening. These included i) inverse iteration applied to
Gaussian noise, ii) Lanczos eigenvectors, and iii) Chebyshev filters applied to Gaussian noise. An
example of our use of high-order Chebyshev filters is given in figure 1. The rapid divergence of a
high order Chebyshev outside the default interval [—1, 1] is used to enhance the modes of interest.
We adopt the trick from polynomial preconditioned implicitly restarted Lanczos [18]. Having
obtained a basis that captures the near null space of the operator, the vectors are projected into left
handed and right handed chiralities. This 95 compatible approach was important to eliminate near
zero eigenvalues in the coarsened operator!.

The vectors ¢ are then restricted to blocks, of size 2* in space time, and the full extent of the
fifth dimension, enabling a coarse space representation to be built up as follows.

b ) ok(x)sxeD
‘Pk(x)—{ 0 :xdb 4.1
span{ ¢} C span{¢/}. 4.2)
Ps=Y log)(ocl  + Ps=1-Fs (4.3)
b
o (MSS- MS§> _ (PSMPS- PSMPS-> )
Mg Mss PsMPs PsM Pg

'Suggested to the authors by Kate Clark.
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we can represent the matrix M exactly on this subspace by computing its matrix elements, known
as the little Dirac operator (coarse grid matrix in multi-grid)

AR = (07 M190) 1 (Mss) =A7[97) (67 4.5)

the subspace inverse can be solved by Krylov methods and is:

O 0 - - a a
0= (0 MSS1> D Mg = (A1) (97 (4.6)

It is important to note that A inherits a sparse structure from M because well separated blocks
do not connect through M. We can Schur decompose the matrix

Mg My | |1 MsMG | |S 0 1 0
Mg Mg | [0 1 0 My, | | M;'Mg 1

SO0
Note that PLM = 00 yields the Schur complement S = Mz — M_;YMsglMsg , and that the diago-

M =UDL =

nalisation L and U are projectors Pr, and P (Galerkin oblique projectors in multi-grid)

- 1 —MgM _ 10
PL=PU ‘:(0 Sg 55) ;. P=L ‘sz( MlM—O) 4.7)
—ss sS

We introduce a smoother which is an order 10 Chebyshev polynomial approximation to 1/x in the
range [1.0,64.0]. To maintain hermiticity in the outer iteration, we presently introduce the smoother
and coarse grid preconditioner in a symmetric way, with the composite outer Krylov operating on
the matrix as documented in [1]:

Mouter = chebyshevPL + PRMchebyshev + Q - MchebyshevPL%Mchebyshev-

5. Initial results

We use a standard RBC-UKQCD a~! = 1.73 GeV ensemble with the Iwaski gauge action and
DWEF 2+1 dynamical flavours with light mass am; = 0.01 and strange mass am, = 0.03 and volume
16 x 32 x 16. To make a viable test system, we set the valence mass artificially low to 0.001 to
increase the condition number, resulting in thousands of conjugate gradient iterations. We use 16
nodes on Cori phase-1 at NERSC, and take 16 subspace vectors and an order O(900) polynomial.

We display present results from the 163 configuration in table 1. A speed up of around a factor
of three is obtain in the solution time even form the small volume system. The set up time still
presently exceeds the original solve time. The relative speed up is expected to grow as our study
progresses to even less well conditioned systems but is the subject of further study.

While it is certainly not yet clear that the final algorithm will be applicable for use in Hybrid
Monte Carlo, there are reasons for encouragement. The Lanczos vectors and Chebysheyv filtered
vectors both demonstrate real speed up over the original red-black conjugate gradient, despite not
yet deflating the coarse grid operator. One or two stages of inverse iteration did not yield com-
petitive solution times and appeared less promising as a subspace setup approach. The 40s solve
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time was composed of 27s on the fine operator (smoother) and 13s on the coarse space. The coarse
space is presently consuming % of the time, but has not itself received any further deflation and
the algorithm remains strictly two level. Our code implementation in Grid is in principle recursive,
and either true recursive multigrid or coarse space eigenvector deflation are open options. Once
the coarse space is made cheaper cost can be rebalanced by solving more exactly and using more
vectors for the coarse space.

The 300s Chebyshev setup is too long on the test system to be used in HMC on this volume
and mass; however since the Chebyshev polynomial is evaluated through a recurrence relation it
is also possible to generate Chebyshevs with many different orders for fixed cost. This avenue has
not yet been explored. Further, it has become common in multigrid to use polynomial prediction
or other schemes to track the subspace across an HMC trajectory since the motion of the gauge
configuration field space is limited by the step size, so it is possible this cost could be amortised
across a trajectory rather than a single solution.

Algorithm  setup/vecs  Fine Matmuls Time

CGNE - 3221 110s
HDCR Lanczos/16 45s
HDCR M~'/16 120s
HDCR Cheby/16 40s
Coarse 13s
Fine 624 27s
Chebyshevs 300s

Table 1: We display the wall clock timing and matrix multiply count for HDCR.
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