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We study the curvature of the chiral transition/crossover line between the low-temperature
hadronic phase and the high-temperature quark-gluon-plasma phase at low densities, performing
simulations of two-flavor QCD with improved Wilson quarks. After confirming that the chiral
order parameter defined by a Ward-Takahashi identity is consistent with the scaling of the O(4)
universality class at zero chemical potential, we extend the scaling analysis to finite chemical po-
tential to determine the curvature of the chiral transition/crossover line at low densities assuming
the O(4) universality. To convert the curvature in lattice units to that of the Tc(µB) in physical
units, we evaluate the lattice scale applying a gradient flow method. We find κ = 0.0006(1) in
the chiral limit, which is much smaller than that obtained in (2+1)-flavor QCD with improved
staggered quarks.
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1. Introduction

Precise location of phase boundaries between the hadronic and quark-gluon-plasma phases is
important in phenomenological analyses of quark matter produced in relativistic heavy-ion col-
lisions. In this study, we concentrate on the shape of the chiral transition/crossover line at low
densities.

The standard scenario for the QCD chiral transition/crossover, based on the fact that the UA(1)
symmetry is explicitly violated by the quantum anomaly at any temperature, predicts that the chiral
transition in two-flavor QCD is of second order in the chiral limit mq = 0 at small chemical potential
µq, and the scaling property around the critical point is universal to that of three-dimensional O(4)
spin models. When mq 6= 0, the second order transition will turn into a crossover but is expected
to change to a first order transition at sufficiently large µq. We illustrate the conjecture in Fig. 1.
The O(4) scaling behavior in QCD has been reported in Ref. [1, 2] for Wilson-type quark actions
and Ref. [3] for an improved staggered quark action. On the other hand, it was recently argued
that the chiral susceptibilities of π and η mesons become the same in the high temperature phase,
suggesting an effective restoration of the UA(1) symmetry at the chiral transition temperature for
these quantities [4]. If this is the case, the chiral transition of two-flavor QCD may be of first order
and the scaling around the critical point at finite mq may belong to the Z2 universality class of Ising
spin systems1. However, the relation with the explicit violation of the UA(1) symmetry remains
unclear and the nature of the chiral transition in two-flavor QCD is still an open problem. In this
study, we first reconfirm that the QCD data is consistent with the O(4) scaling, and then evaluate
the curvature of the chiral crossover/transition line at small µq assuming the O(4) universality. We
reserve a test of the other possibility for the next step. To avoid deformation of the flavor symmetry
and theoretical uncertainties about the continuum limit, we adopt improved Wilson quarks.

2. Method

The order parameter of the O(4) spin model is given by the magnetization M. In the vicinity
of the second order transition point, M follows the scaling relation

M/h1/δ = f (t/h1/βδ ) (2.1)

with the critical exponents 1/(βδ ) = 0.546 and 1/δ = 0.2073(4) [7, 8], where h is the external
magnetic field, t = (T −Tc|h=0)/Tc|h=0 is the reduced temperature, and f (x) is the scaling function.
In two-flavor QCD at µq = 0, we may identify M = 〈ψ̄ψ〉, h = 2mqa, and t = β −βct , where βct

is the critical point of β = 6/g2 in the chiral limit and a is the lattice spacing2. At µq 6= 0, because
the QCD action has the chiral symmetry at mq = 0, we expect the same critical properties. In the
low density region, because of the symmetry under µq →−µq, the leading contribution from small
µq may be incorporated by just replacing t by [9]

t = β −βct +
c
2

(µq

T

)2
. (2.2)

1See Refs. [5, 6] for other possibilities.
2Following a convention, β denotes both the lattice gauge coupling and a critical exponent.
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Figure 1: Expected phase daigram of two-flavor
QCD at finite temperature and density in the stan-
dard scenario.
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Figure 2: O(4) scaling plot of the chiral order pa-
rameter.

The coefficient c is the curvature of the critical line βct(µq)' βct(0)−c(µq/T )2/2 in the (β ,µq/T )
plane in the chiral limit at low densities. From the scaling relation, we find

d2M
d(µq/T )2

∣∣∣∣
µq=0

= c
dM
dt

∣∣∣∣
µq=0

,
dM/dt

h1/δ−1/βδ

∣∣∣∣
µq=0

=
d f (x)

dx

∣∣∣∣
x=t/h1/βδ

. (2.3)

Then, the coefficient c can be obtained by

c ≡ − d2βct

d(µq/T )2 =
1

h1/δ−1/βδ
d2〈ψ̄ψ〉

d(µq/T )2

∣∣∣∣
µq=0

/
d f (x)

dx

∣∣∣∣
x=t/h1/βδ

. (2.4)

The curvature of the critical temperature Tc(µB) in physical units can now be given as

κ ≡ − 1
2Tc

d2Tc

d(µB/T )2 = − 1
18Tc

d2Tc

d(µq/T )2 = − c
18

/(
a

dβ
da

)∣∣∣∣
β=βct

, (2.5)

where µB = 3µq is the baryonic chemical potential and a(dβ/da) is the lattice beta function.
Here, a careful treatment is required with Wilson-type quarks because the chiral symmetry

is explicitly broken at finite a. Following Refs. [1, 2], we define mq and 〈ψ̄ψ〉 by axial-vector
Ward-Takahashi identities [10]: 2mqa = −mPS 〈Ā4(t)P̄(0)〉

/
〈P̄(t)P̄(0)〉, where P and Aµ are the

pseudo-scalar and axial-vector meson operators and the bar means the spatial average, and

〈ψ̄ψ〉 =
2mqa
N3

s Nt
∑
x,x′

〈P(x)P(x′)〉 =
2mqa(2K)2

N3
s Nt

〈
tr
(
D−1γ5D−1γ5

)〉
, (2.6)

where D is the quark matrix, K is the hopping parameter, and N3
s Nt is the number of sites. They

satisfy the Ward-Takahashi identity, 〈∂µAµ(x)P(x′)〉− 2mqa〈P(x)P(x′)〉 = δ (x− x′)〈ψ̄ψ〉, in the
continuum limit.

Although a direct simulation at µq 6= 0 is difficult due to the complex weight problem, the
reweighting method is applicable at small µq. Alternatively, we may directly calculate operators
corresponding to derivatives of observables in terms of µq at µq = 0. We test these two methods to
evaluate the derivatives of 〈ψ̄ψ〉.
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Method 1: Reweighting method We use the reweighting method to calculate 〈ψ̄ψ〉 at µq 6= 0,

(2K)2 〈tr
(
D−1γ5D−1γ5

)〉
β ,µq

= (2K)2 1
Z

∫
DU tr(D−1γ5D−1γ5)(detD)Nfe−Sg

=
(2K)2

〈
tr
(
D−1γ5D−1γ5

)
(µq)eNf[lndetD(µq)−lndetD(0)]

〉
β ,0〈

eNf[lndetD(µq)−lndetD(0)]
〉

β ,0
, (2.7)

where Nf = 2. Because we calculate the second derivative with respect to µq, we evaluate lndetM(µq)

and tr(D−1γ5D−1γ5) by a Taylor expansion up to O(µ2
q ) [11]:

Nf [lndetD(µq)− lndetD(0)] = µqaQ1 +
(µqa)2

2
Q2 +O(µ3

q ),

(2K)2tr
(
D−1γ5D−1γ5

)
(µq) = (2K)2tr

(
D−1γ5D−1γ5

)
(0)+µqaC1 +

(µqa)2

2
C2 +O(µ3

q ). (2.8)

where Qn and Cn are defined by

Qn = Nf
∂ n lndetD
∂ (µqa)n , Cn = (2K)2 ∂ ntr

(
D−1γ5D−1γ5

)
∂ (µqa)n . (2.9)

These quark operators can be evaluated by a random noise method. We then fit the data by

〈ψ̄ψ〉(µq) = x+y(µq/T )2, to extract x = 〈ψ̄ψ〉(0) and y =
1
2

d2 〈ψ̄ψ〉
d(µq/T )2 (0). Here, the first deriva-

tive is zero due to the symmetry µq →−µq.

Method 2: Direct calculation of derivative operators Derivatives of 〈ψ̄ψ〉 are given by

〈ψ̄ψ〉
∣∣∣∣
µq=0

=
2mqa
N3

s Nt
F0,

∂ 〈ψ̄ψ〉
∂ (µq/T )

∣∣∣∣
µq=0

=
2mqa
N3

s N2
t
(F1 −F0A1) = 0,

∂ 2 〈ψ̄ψ〉
∂ (µq/T )2

∣∣∣∣
µq=0

=
2mqa
N3

s N3
t

(
F2 −2F1A1 −F0A2 +2F0A

2
1
)
=

2mqa
N3

s N3
t
(F2 −F0A2) ,(2.10)

at µq = 0, where

A1 = 〈Q1〉 , A2 = 〈Q2〉+
〈
Q2

1
〉
, F0 = 〈C0〉 ,

F1 = 〈C1〉+ 〈C0Q1〉 , F2 = 〈C2〉+2〈C1Q1〉+ 〈C0Q2〉+
〈
C0Q

2
1
〉
. (2.11)

Note that An and Fn are zero for odd n’s at µq = 0.

3. Numerical results

We perform finite-temperature simulations of two-flavor QCD at µq = 0 on a 163 × 4 lattice
and combine them with configurations obtained in Refs. [12, 13, 14]. The RG-improved Iwasaki
gauge action and the 2-flavor clover-improved Wilson quark action are adopted. The measurements
are done every 10 trajectories and 500 configurations are used for the analysis at each simulation
point. The range of β is 1.5 to 2.0. The quark mass mqa is computed performing zero temperature
simulations on 163 ×24 or 164 lattices at the same points as the T 6= 0 simulations. The number of
configurations used for the measurement is 50 for 164 and 200 for 163 ×24. The pseudo-scalar to
vector meson mass ratio at T = 0 is mPS/mV ≈ 0.65, 0.70 and 0.80. 〈ψ̄ψ〉 and its derivatives are
calculated by the random noise method [13, 14] using 150 noise vectors for each color and spin.
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Figure 3: Chiral extrapolation of a/
√

t2.5.
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Figure 4: The beta function in chiral limit.

3.1 O(4) scaling at µq = 0

We first test the O(4) scaling relation M/h1/δ = f (t/h1/βδ ) assuming the O(4) critical expo-
nents. The scaling function f (x) for O(4) spin model is given in Ref. [7, 8]. We adjust three fit
parameters to fit the QCD data to f (x), i.e., the critical point βct at µq = 0 and the scales of the
horizontal and vertical axes of the scaling function. We also vary the range of data used in the
fit. The best fit result is shown in Fig. 2. The black curve is the O(4) scaling function. Only the
data of mPS/mV ' 0.65 (red) and 0.70 (blue) in the range β ≤ 1.75 are used in the fit, while all
data including those at β > 1.75 and at mPS/mV ' 0.80 (green) are shown in the figure. From
the fit, we obtain βct = 1.532(32) for the critical point in the chiral limit. We find that the mq-
and T -dependences of the chiral condensate in two-flavor QCD are well consistent with the O(4)
universality.

3.2 Lattice scale and beta function in the chiral limit

We determine the lattice spacing a by the gradient flow method [15, 16] using the T = 0
configurations obtained on 164 and 163 ×24 lattices. We measure t2〈E(t)〉 as function of the flow
time t, where E(t) is the gauge energy density defined as E(t) = 1

4 Ga
µν(t)G

a
µν(t) using the field

strength Ga
µν(t) of flowed gauge field at t. To reduce the lattice discretization error in 〈E〉, we

construct the square of the field strength by an appropriate linear combination of the plaquette and
clover operators following Ref. [17]: t2〈E〉= (−4c1+1/4)t2〈Epl〉+(4c1+3/4)t2〈Ecl〉, where Epl

and Ecl are defined by the plaquette and clover, respectively, and c1 =−0.331 is the improvement
parameter of the Iwasaki gauge action. Because t2〈E〉 is dimension-less, it can depend on t and a
only through their dimension-less ratio

√
t/a. We determine the lattice spacing a in a unit of the

flow time
√

tX at which t2〈E〉= X . In this study, we test five values, X = 1.5, 2.0, 2.5, 3.0 and 3.5.
The results of a/

√
tX are plotted in Fig. 3 for X = 2.5. At each β , we extrapolate a/

√
tX

to the chiral limit where the pseudo-scalar meson mass mPS vanishes, by fitting the data to the
fitting function a/

√
tX = A(mPSa)2 +B with fit parameters A and B. The red symbols in Fig. 4 are

β (a/
√

t2.5) in the chiral limit. We then fit β by a cubic function of a/
√

tX to obtain a(dβ/da) in
the chiral limit by differentiating the fit result β (a/

√
tX). The result of a(dβ/da) for X = 2.5 is

shown by the blue curve in Fig. 4. We find that a(dβ/da) is well stable in the range X = 2.0 - 3.0.
We summarize the results for the beta function at βct in Table 1.
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Figure 5: The second derivative of the chiral con-
densate.
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Figure 6: Curvature of the chiral transition/
crossover line in the (β ,µq/T ) plane.

Method 1 Method 2
c 0.0418(22) 0.0404(60)

scale
√

t2.0/a
√

t2.5/a
√

t3.0/a
√

t2.0/a
√

t2.5/a
√

t3.0/a
−a(dβ/da) 3.90(25) 3.85(16) 4.01(39) 3.90(25) 3.85(16) 4.01(39)

κ 0.00060(5) 0.00060(4) 0.00058(6) 0.00057(9) 0.00058(9) 0.00056(10)

Table 1: The beta function at βct = 1.532(32) and the curvatures c and κ of the chiral transition line in
the chiral limit at µq = 0.

3.3 Curvature of the chiral transition line in the chiral limit

We now evaluate the curvature of the chiral transition line in the chiral limit at low densities,
by applying the two methods discussed in Sec. 2. Our results for the second derivative of the chiral
condensate (2.3) are shown in Fig. 5. O(4) exponents and the O(4) scaling function are assumed.
The shapes of the symbols, square, circle and triangle, correspond to mPS/mV = 0.65, 0.70 and
0.80, respectively. The blue (red) symbols are the results of the Method 1 (Method 2). We find that
the results of the two method are well consistent with each other. The curvature c in the (β ,µq/T )
plane is given by Eq. (2.4). The result of c is plotted in Fig. 6. To evaluate c, we perform a constant
fit using the data of mPS/mV = 0.65 and 0.70 in the fit range of β ≤ 1.75. We obtain c= 0.0418(22)
by the Method 1, and c = 0.0404(60) by the Method 2, as shown by blue and red lines in Fig. 6.

Combining the results of c and that of a(dβ/da) obtained in Sec. 3.2, we calculate the cur-
vature κ of the critical temperature Tc(µq) in physical units by Eq. (2.5). Our results of κ are
summarized in Table 1. The difference between the results of Method 1 and Method 2 turned out
to be much smaller than the statistical errors. From these results, we obtain κ = 0.0006(1) for
two-flavor QCD.

4. Summary and discussions

Performing finite-temperature simulations of two-flavor QCD with improved Wilson quarks,
we evaluated the curvature of the chiral transition line Tc(µB) in the chiral limit at low densities.
We first confirmed that the chiral order parameter at zero-density is consistent with the O(4) scaling
suggested by the standard scenario. Extending the O(4) scaling to small chemical potentials, we
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then calculated the second derivative of the chiral condensate in terms of the chemical potential,
which is needed to evaluate the curvature, by adopting two methods – a reweighting method and
a direct calculation of derivative operators. We found that the results of the two methods agree
with each other. Combining the results with a study of the lattice beta function by a gradient
flow method, we obtain κ = 0.0006(1) for the curvature in two-flavor QCD. This value is much
smaller than the result obtained with improved staggered quarks in (2+1)-flavor QCD [9], which
is κq = 0.059(2)(4), i.e. κ = κq/9 = 0.0066(2)(4). To clarify if the difference is due to a strange
quark effect and/or the choice of the lattice quark action, a systematic study varying quark mass as
well as lattice spacing and volume is needed.
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