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1. Introduction

New particles can reveal their existence indirectly through tiny discrepancies in the properties
of known particles from that expected in the Standard Model. The magnetic moment of the muon
shows such a discrepancy, a tantalising 25 parts in 1010, with 3σ significance. The magnetic
moment, µ , is given in terms of the spin, S, by:

~µ = g
e

2m
~S; aµ =

g−2
2

(1.1)

The difference of g from the naive value of 2 (all divided by 2) is called the anomalous mag-
netic moment, aµ . It is determined directly by measuring the spin precession as polarised muons
circulate in a ring with a perpendicular magnetic field. Experiment E989 at Fermilab will start
data-taking in 2017 and aims to reduce the experimental uncertainty by a factor of 4. An improved
theoretical uncertainty from the Standard Model is needed to match this. The largest uncertainty
comes from the diagram containing a quark loop (see Figure 1): the Leading Order Hadronic Vac-
uum Polarisation (HVP) contribution. We give here the results of a calculation of this contribution
from full lattice QCD.

µ

q

q

Figure 1: On the left, the α2
QED leading order HVP contribution to aµ is represented as a strongly-interacting

shaded blob inserted into the photon propagator that corrects the point-like photon-muon coupling at the top
of the diagram. This figure shows the dominant connected contribution where a single qq pair is produced
as a virtual intermediate state in the photon propagator. This is flavor diagonal. There is in addition a
small quark-line disconnected contribution from cases where the original qq pair annihilate to gluons at an
intermediate point and a new qq pair is generated from the gluons to once again annihilate to a photon. This
process is not flavor-diagonal but is suppressed when summed over u, d and s quarks because the sum of
their electric charges vanishes.
On the right, the leading order chiral perturbation theory (scalar QED) diagram for the HVP contribution,
from γ→ π+π−. Chiral perturbation theory on its own does not provide a good description of the u/d HVP
contribution to aµ since that contribution is dominated by the ρ . However, the γ → ππ diagram above is
sensitive to mπ and the finite volume and so is important in studies of systematic uncertainties from those
sources in lattice QCD calculations.

2. Lattice Calculation

We use MILC gluon field configurations that include u, d, s and c HISQ sea quarks (with
mu = md) at 3 lattice spacing values (0.15, 0.12 and 0.09 fm), 3 u/d quark masses going down to
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the physical u/d quark mass and 3 volumes (for one parameter set). This allows us to do the most
realistic calculations of the HVP contribution to aµ to date [1]. On these configurations we gener-
ate HISQ propagators and combine them to give the correlation function between two local spatial
vector currents constructed of quark fields of a specfic flavor (normalised nonperturbatively), sep-
arated by a time interval, t. Taking t-moments of the correlation function allows us to reconstruct
the renormalised vacuum polarisation function [2] and determine, by integrating over k2, its con-
tribution to aµ .

Ignoring quark-line disconnected contributions, the vacuum polarization separates into distinct
contributions for each quark flavour, f:

aHVP,LO
µ (f) =

α

π

∫
∞

0
dk2 f (k2)(4πα)Π̂f(k2) (2.1)

where α ≡ αQED is the QED fine structure constant and k is the (Euclidean) momentum carried by
the virtual photons. f (k2) is a kinematic factor that diverges as k2 → 0, where the renormalized
vacuum polarization function, Π̂(k2) ≡ Π(k2)−Π(0), vanishes [3]. The resulting integrand is
peaked around k2 ≈ m2

µ . Note that, in this expression, we have absorbed into Π̂ a factor of Q2
f ,

where Qf is the electric charge of quark f in units of the proton’s charge. This is a change to the
convention that we used in [2].

Lattice QCD can be used to calculate the vacuum polarization function Π̂(k2). In [2] we
developed an accurate method using correlators that are routinely calculated for determining the
hadron spectrum. We define Π̂(k2) in terms of its Taylor expansion,

Π̂(k2) =
∞

∑
j=1

k2 j
Π j, (2.2)

where the Taylor coefficients Π j are determined from time-moments G2 j of the vector current-
current correlator at zero spatial momentum:

G2 j ≡∑
t

∑
~x

t2 jZ2
V 〈 ji(~x, t) ji(0)〉; Q2

f G2 j = (−1) j ∂ 2 j

∂k2 j k2
Π̂(k2)

∣∣∣∣
k2=0

= (−1) j (2 j)! Π j−1.

(2.3)
Here ZV renormalizes the lattice vector current, and

t ∈ (0,1,2, . . .T/2−1,0,−T/2+1, . . . ,−2,−1). (2.4)

We replace the Taylor series by its [n,n] and [n,n−1] Padé approximants to perform the integral in
Eq. (2.1) numerically. The approximants provide an accurate approximation for both the low and
high k2 regions in the integral, and results converge to better than 1% by n = 2 [2].

For s, c, and b quarks direct computation of the moments from the lattice correlators is very
accurate [2, 4, 5]. For the u/d case [1] we reduce statistical errors by calculating a 2× 2 matrix
of local and smeared correlators and using fitted results for the local correlator at large t in the
moment caclulation, rather than the data.

The ρ pole dominates the u/d HVP calculation, giving 70% of the result. Properties of the
ρ , such as its mass and decay constant, obtained from our correlators at large t can be compared
to experiment (see Figure 2), where we see good agreement at physical u/d quark masses. Note
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Figure 2: Results for the ρ meson mass (upper plot) and decay constant (lower plot) as a function of u/d
quark mass given by m2

π . These are obtained from large-time fits to the vector correlators used for our
determination of the u/d HVP contribution to aµ . Experimental results are given as a dashed line for the
mass and a grey band for the decay constant, where the uncertainty comes from the definition of the decay
constant for a particle such as the ρ , which has a large width.

that, although our π masses are light enough and our volumes large enough for ρ decay, our corre-
lators do not give the ground-state ππ energy (corresponding to each π having one unit of spatial
momentum) at large t. This is because the local vector-vector correlator, which is the correct one
to calculate for aµ , is not designed to have good overlap with π−π states.

At smaller t, and in the t-moments, additional states beyond the ρ contribute, including excited
ρ states and ππ states with back-to-back π with the full range of lattice spatial momenta. The
leading ππ terms are readily calculated in scalar QED (see Figure 1, right) and the continuum
integrals and lattice sums over momenta performed for different mπ and different lattice volumes.
This calculation is very accurate since the only parameters are mπ and eπ . The ππ contribution is
the piece most sensitive to the volume and the π mass and it is therefore important to study this to
understand lattice QCD systematic uncertainties. A specific staggered quark issue relevant to our
calculation is that different tastes of π meson have masses that differ at O(a2) and a sum over tastes
must be done [1]. We use this calculation to determine corrections to our lattice QCD results for the
ππ contribution; not surprisingly these corrections are most significant for physical mπ . We also
estimate corrections to this analysis by coupling in an explicit ρ field to the effective theory with
parameters mρ , fρ , fρππ that are also well-known. Our correction from finite-volume/staggered
quark effects in ππ is 7.0(7)% at physical u/d masses. In addition, sensitivity to the u/d quark mass
in our results is almost eliminated by rescaling the moments (with ππ removed) by appropriate
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powers of the experimental ρ mass, modifying a method in [6]. This affects results at unphysically
heavy u/d masses.

Figure 3 shows corrected and raw data as a function of the u/d quark mass. Note how the
corrected data have reduced volume, mu/d and a-dependence. A simple fit gives a physical value
for the connected u/d HVP contribution of 598(6)(8)x10−10 where 6 is the fit/statistical uncertainty
and 8 is the systematic uncertainty from missing QED and isospin effects. The probability density
function for the result is shown in Figure 3.
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Figure 3: On the left: our results for the connected u/d contribution to aHV P,LO
µ . This is plotted against the

u/d quark mass, expressed as its deviation from the physical value in units of the tuned s qaurk mass. The
lower curve shows our raw data; the upper curve includes corrections to the ππ contribution and a rescaling
of moments away from the physical point by powers of the ρ mass. Different symbols denote results at
different values of the lattice spacing, a. The dotted lines show fitted results at each value of a with the black
dotted line representing the continuum limit. The grey bands give ±1σ about that result.
On the right: the probability distribution function for our final result for the u/d connected contribution to
aHV P,LO

µ from a Bayesian analysis of our fit. The red line is the Gaussian approximation to the distribution,
which agrees well.

Combining the u/d result with our earlier values for the contribution from s quarks [2], c
quarks [2, 4] and b quarks [5] gives a total connected HVP,LO result from adding

aHVP,LO
µ

∣∣
conn.
×1010 =


598(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(2.5)

to obtain
aHV P,LO

µ = 666(6)(12)×10−10. (2.6)

This now includes a 1.5% systematic uncertainty for quark-line disconnected diagrams obtained
from an analysis of Hadspec collaboration correlators [7]. These have a clear signal for discon-
nected contributions for all light flavour combinations, albeit at unphysically heavy u/d quark
masses. Simple phenomenological arguments based on the properties of ρ and ω mesons also
lead to the conclusion that the quark-line disconnected contribution is O(1%). A calculation with
domain-wall quarks now gives a non-zero result in agreement with this expectation [8].
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We compare lattice results to determinations that use the experimental cross-section for e+e−→
hadrons in Figure 3. The green point shows the value expected if there were no new physics (i.e.
this point is the value of experiment - [sum of Standard Model values for QED, EW, HVP,Higher
Order and hadronic light-by-light contributions] = 720(7)×10−10).

640 650 660 670 680 690 700 710 720 730

aHVP,LO
µ × 1010

no new physics

Jegerlehner
1511.04473
Benayoun et al
1507.02943
Hagiwara et al
1105.3149
Jegerlehner et al
1101.2872

ETMC
1308.4327

HPQCD
this paper

Figure 4: Our final result for aHV P,LO
µ compared to an earlier value (including u/d, s and c quarks) from

the ETM collaboration [6] and to recent results using experimental cross-section information from e+e−→
hadrons [9, 10, 11, 12]. The green filled circle denotes the value expected for the HVP contribution working
back from the experimental result in the absence of new physics. Our value differs from this by 3σ .

3. Conclusions

Lattice QCD calculations of the HVP contribution to aµ are making fast progress. Our result
is the most accurate to date and shows a 3σ discrepancy with experiment. Ongoing work with
the MILC and Fermilab Lattice collaborations is improving results at the physical value of mu/d

by increasing statistics on the lattices used here and also going to finer lattices where staggered
quark taste effects will be reduced. We are adding analysis of QED and isospin effects along with
improved analysis of disconnected contributions.
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