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1. Introduction

Non-Abelian gauge theories with infrared-conformality have been considered as viable mod-
els for physics beyond the Standard Model. In these models, the anomalous dimension γm of
the fermion operator ψψ is a quantity of specific interest. The scaling of the spectral density of
the massless Dirac operator is governed by the mass anomalous dimension [1], and while the ex-
plicit calculation of the eigenvalue distribution is prohibitively costly, recently developed stochastic
methods [2] have made it possible to determine the mass anomalous dimension from the scaling of
the mode number of the Dirac operator [3].

The theories which we are studying are SU(2) with N f = 6 and 8 fermions in the fundamental
representation. While N f = 8 seems to be well within the conformal window [4, 5], the situation
with N f = 6 has been unclear [6, 7, 8, 9]. However, in our recent study [10] we have observed clear
evidence of a fixed point.

The mode number of the Dirac operator is known to follow a scaling behaviour of

ν(Λ)≡ 2
∫ √

Λ2−m2

0
ρ(λ )dλ ' ν0(m)+C

[
Λ

2−m2]2/(1+γ∗) (1.1)

in some energy range between the infrared and the ultraviolet in the vicinity of a fixed point. Here
ρ(λ ) is the eigenvalue density of the Dirac operator, γ∗ is the mass anomalous dimension γm at the
fixed point, ν0(m) is an additive constant, C is a dimensionless constant that is a combination of
renormalisation factors, and m is the quark mass. The energy range where the power law behaviour
of Eq. 1.1 holds is not known beforehand, and needs to be determined by observing the quality of
the fit in a given range.

The mass anomalous dimension can also be obtained by using the Schrödinger functional mass
step scaling method [11], and in what follows we will compare results obtained using both of these
methods.

2. Mass step scaling

We simulate SU(2) with N f = 6 and N f = 8 using HEX smeared [12], clover improved [13]
Wilson fermions using the same parameters as for the evaluation of the running coupling using the
gradient flow (GF) method [4, 10, 14]. In order to study the massless case we tune the hopping
parameter to κ = κc for which mPCAC ∼ 0. For N f = 6 we simulate the theory at eight different
values of β corresponding to measured gauge couplings from g2

GF = 0.56 to g2
GF = 14.24 on a

V = 244 lattice, and for N f = 8 we use eight different values of β corresponding to couplings from
g2

GF = 0.55 to g2
GF = 9.49 on a V = 324 lattice.

For the evaluation of the mass anomalous dimension using the step scaling method, we use the
Schrödinger functional boundary conditions:

Ui(x, t = 0) =Ui(x, t = L) = 1. (2.1)

The mass anomalous dimension γm is measured from the running of the pseudoscalar density renor-
malization constant [11, 15]

ZP(L) =
√

3 f1

fP(L/2)
, (2.2)
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Figure 1: The mass anomalous dimension as a function of the gradient flow coupling constant obtained
using the mass step scaling function. The different symbols correspond to different lattice size pairings. For
N f = 6 the fixed point is at g2

GF ∼ 14.5 [10], and for N f = 8 at g2
GF ∼ 6 [4]. The results for larger couplings

become unstable.

where

fP(t) =
−a6

3L6 ∑
y,z
〈Pa(x, t) ζ̄ (y)γ5

1
2

σ
a
ζ (z)〉, (2.3)

f1 =
−a12

3L12 ∑
u,v,y,z

〈ζ̄ ′(u)γ5
1
2

σ
a
ζ
′(v) ζ̄ (y)γ5

1
2

σ
a
ζ (z)〉. (2.4)

Here Pa(x) = ψ(x)γ5
1
2 σaψ(x), and ζ and ζ ′ are boundary quark sources at t = 0 and t = L

respectively. The mass step scaling function is then defined as [11]

ΣP(u,s,L/a) =
ZP(g0,sL/a)
ZP(g0,L/a)

∣∣∣∣
g2

GF (g0,L/a)=u
(2.5)

σP(u,s) = lim
a/L→0

ΣP(u,s,L/a). (2.6)

For N f = 6 we choose s= 3/2 and for N f = 8 s= 2, and find the continuum step scaling function σP

by measuring ΣP at L/a = 8, 12, 16, 20, 24 and L/a = 8, 10, 12, 16 for N f = 6 and 8 respectively.
The step scaling function can then be used to obtain the mass anomalous dimension [15] by

γ∗(u) =−
logσP(u,s)

logs
. (2.7)

Our preliminary results using the mass step scaling method are shown in Fig. 1. The method
gives results comparable to one loop perturbation theory predictions at small gauge coupling g2

GF ,
but becomes unstable at large coupling as the theory flows toward the fixed point at g2

GF ∼ 14.5 for
N f = 6 [10] and at g2

GF ∼ 6 for N f = 8 [4].
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3. Spectral density method

We calculate the mode number per unit volume of Eq. 1.1 by using

ν(Λ) = lim
V→∞

1
V
〈tr P(Λ)〉 , (3.1)

where the operator P(Λ) projects from the full eigenspace of M = m2− /D2 to the eigenspace of
eigenvalues smaller than Λ2. The trace is evaluated stochastically [2].

We use the lattices obtained from the step scaling analysis, and use between 12 to 20 well
separated configurations for each value of the gauge coupling. We calculate the mode number
for 90 values of Λ2 ranging from 10−3 to 0.3 for N f = 6 and from 10−4 to 0.3 for N f = 8. The
difference in the lower limits comes from the smaller lattice size of N f = 6, for which the mode
number reaches zero at larger Λ.

The two constants ν0(m) and m2 = (ZAmPCAC)
2 in Eq. 1.1 are expected to be negligible since

we are studying the massless Dirac operator and the additive constant ν0(m) is related to the part
of the spectrum that is sensitive to the effects of the nonzero mass. In our analysis we used

ν(Λ)'CΛ
4/(1+γ∗) (3.2)

as the function we fit the calculated mode number data to, and checked that the error relative to Eq.
1.1 was O(10−3).

The fit range was determined by varying the lower and the upper limit of the fit range and
observing the stability and the quality of the fit. As a cross reference we compared the value of γ∗
obtained using the spectral density method for small couplings to the value obtained using the step
scaling method in order to further assess wether the chosen fit range was good or not.

In Fig. 2 we present the mode number data we have calculated for both N f . It is apparent
that at small couplings the low eigenvalues appear in discrete energies which manifests in the step-
like structure of the mode number curve. This behaviour should vanish when the volume goes to
infinity.

In Fig. 3 we plot the mode number divided by the fourth power of the eigenvalue scale with
the chosen fit range and the fit function of Eq. 3.2 shown overlaid in red. According to Eq. 3.2 in
the proximity of the fixed point the infrared behaviour should be approximately linear on a log-log
plot and precisely linear exactly at the fixed point in the absence of lattice artefacts. Indeed we
observe this behaviour at strongest couplings for both N f = 6 and 8. We use the same fit range
for the weak coupling as for the large coupling to illustrate the evolution of the mass anomalous
dimension, even though the power law is clearly not evident.

Our main results for the spectral density method are shown in Fig. 4 where we plot the mass
anomalous dimension γ∗ obtained from fitting Eq. 3.2 to the data as a function of the gauge coupling
g2

GF .
In order to quantify the uncertainty in choosing the fit range, we have varied the fit range

around a chosen range which produced reasonable results, and this is represented as the shaded
band around the curve. The largest uncertainty is with the smallest gauge couplings since the data
is not smooth, and a slight change in the fit range changes the angle of the fit line dramatically.
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Figure 2: The mode number calculated for different gauge couplings for N f = 6 on a V = 244 lattice, and
for N f = 8 on a V = 324 lattice.

10-3 10-2 10-1

a2Λ2

10-1

100

101

ν(
Λ
)/
a
4
Λ
4

Nf =6

10-4 10-3 10-2 10-1

a2Λ2

10-1

100

101

Nf =8

Figure 3: The mode number divided by a4Λ4 as a function of a2Λ2. The dashed red lines indicate the chosen
fit range and the red solid lines the fit function. The fit ranges were varied around these chosen regions. The
curves are in a descending gauge coupling order.

The larger couplings near the fixed point are not as sensitive to the fit range variation, which can be
seen from the narrowing error bands in Fig. 4 as one goes from small coupling to larger coupling.

While the results obtained using the mass step scaling method shown in Fig. 1 show good
agreement with the perturbative line, the spectral density method suffers from large errors for small
couplings. For larger couplings near the fixed point the spectral density method shows consistent
behaviour whereas the mass step scaling method seemed to break down.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
8
9

Mass anomalous dimension of SU(2) using the spectral density method Joni M. Suorsa

0 2 4 6 8 10 12 14 16

g2GF

0.00

0.05

0.10

0.15

0.20

0.25

0.30

γ
∗

Nf =6

0 2 4 6 8 10 12

g2GF

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Nf =8

Figure 4: The value of γ∗ obtained by fitting Eq. 3.2 to the data in Fig. 2 is shown with black points and
the one loop perturbative result with a red line. The shaded regions are estimates for reasonable ranges of
values obtainable using the method, and were obtained by varying the fit range shown in Fig. 3 slightly.

4. Conclusions

We have determined the mass anomalous dimension of SU(2) gauge theory with six and eight
Dirac fermions in the fundamental representation of the gauge group using the spectral density
method and the mass step scaling method. We have demonstrated that the spectral density method
gives results compatible with perturbation theory and the nonperturbative mass step scaling method
at weak coupling. With the spectral density method our estimate for the fixed point mass anomalous
dimension is γ∗ ∼ 0.275 for N f = 6 and γ∗ ∼ 0.125 for N f = 8. The precise error analysis of the
error range remains to be completed.

A major source of uncertainty that is not easily quantifiable is the choice of the fit range where
Eq. 3.2 (or Eq. 1.1) is used to describe the data. For larger couplings near the fixed point the spectral
density method works well and we observe behaviour that seems to be a genuine nonperturbative
feature and not an artefact due to fit uncertainties. Thus, the spectral density method in conjunction
with the step scaling method give access to the mass anomalous dimension reliably from small
coupling to couplings near or at the fixed point.
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