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1. Introduction

These proceedings report on our ongoing effort to simulate supersymmetric Yang-Mills (SYM)
gauge theories with gauge group SU(N). Our considerations start from the dimensional reduction
of N = 1 SYM in d = 4 dimensions with gauge group SU(N) which yields N = 4 SYM in
one dimension, i.e. SYM quantum mechanics. In the process the three spatial components of the
4-dimensional gauge field become bosonic fields denoted by Xi(t), i = 1,2,3, while the temporal
component is denoted by A(t). The fermionic degrees of freedom are represented by complex
2-component Grassmann fields ψ(t), ψ(t). All fields are in the adjoint representation and the
complete action reads [1, 2]

S =
1
g2

∫
β

0
dt Tr

{
(DtXi)

2− 1
2
[Xi,X j]

2 +ψDtψ−ψσi [Xi,ψ]

}
where Dt = ∂t − i[A(t), · ] is the covariant derivative and σi are the Pauli matrices. The temporal
extent β of the system is discretized in the Euclidean direction using Lt lattice points. In order to
maintain gauge invariance of the discretized system, the continuum gauge field is replaced by gauge
links U(t) which are elements of the gauge group SU(N), and hence the lattice covariant derivative
becomes D̂tXi(t) =U(t)Xi(t +1)U†(t)−Xi(t). The same difference operator also emerges for the
fermions after inclusion of the Wilson term which breaks time reversal and hence charge conjuga-
tion symmetry. Supersymmetry is broken by the discretization as well. However, all symmetries
are automatically restored in the continuum limit. For further reference, we include a chemical
potential, which couples to the fermion number, and write out the fermion action as

SF =
1

2g2

Lt−1

∑
t=0

[
−ψ

a
α(t)W

ab
αβ

(t)eµ
ψ

b
β
(t +1)+ψ

a
α(t)Φ

ab
αβ

(t)ψb
β
(t)
]
.

The matrix W connecting the fermion fields at different lattice sites reads

W ab
αβ

(t) = 2δαβ ·Tr{T aU(t)T bU†(t)} ,

where T a are the generators of the gauge group SU(N), and Φ is the 2(N2−1)×2(N2−1) Yukawa
interaction matrix

Φ
ab
αβ

(t) = (σ0)αβ ·δ ab−2(σi)αβ ·Tr{T a[Xi(t),T b]} .

Here, σ0 is the 2×2 unit matrix.

2. Canonical formulation

Usually, simulations are done using the grand canonical partition function

Zp,a =
∫

DU DXi e−SB[U,Xi] detDp,a[U,Xi; µ]

where SB is the bosonic action and Dp,a the Wilson Dirac operator with periodic or antiperiodic
fermion boundary conditions, respectively. Instead of fixing the chemical potential, one can also
fix the fermion number n f and work with the canonical partition functions

Zn f =
∫

DU DXi e−SB[U,Xi] detDn f [U,Xi] .
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While the fugacity expansion relates the canonical and grand canonical partition functions and
provides a relation between the corresponding determinants, the direct calculation of detDn f con-
stitutes a challenge for doing simulations directly in the canonical formulation. It turns out that the
temporal reduction of the Wilson Dirac operator [3, 4] based on Schur complement techniques is a
crucial step for performing this task. The reduced determinant formula reads

detDp,a[U,Xi; µ] = det
[
T ∓ e+µLt

]
, T =

Lt−1

∏
t=0

(Φ(t)W (t))

where the matrix T is of size nmax
f ×nmax

f with nmax
f = 2(N2−1). Comparing this expression with

the fugacity expansion and using some algebraic matrix identitites one obtains an explicit formula
for the canonical determinants in terms of transfer matrices defined for fixed canonical sectors [3],

detDn f [U,Xi] = Tr
Lt−1

∏
t=0

[
T Φ

n f
(t) ·TW

n f
(t)
]
= TrMn f (T ) = ∑

B
detT ABAB[U,Xi] . (2.1)

Here, T Φ
n f
(t) ·TW

n f
(t) constitutes the transfer matrix at time t, which describes the transition proba-

bilities of the n =
(

nmax
f
n f

)
states in sector n f , and Mn f (·) denotes the matrix of minors of rank n f ,

i.e., the index set B⊆ {1,2, . . . ,2(N2−1)} is of size n f [3].

3. Simulation algorithms

There are several possibilitites to simulate the canonical partition functions based on eq.(2.1).
Results from simulating directly the transfer matrices will be described elsewhere, while here we
concentrate on a simulation strategy based on the sum of the principal minors,

Zn f = ∑
B

∫
DU DXi e−S[U,Xi] detT ABAB[U,Xi] .

Since the number n of principal minors of order n f ∼ nmax
f /2 grows factorially with the size nmax

f
of T , an exact evaluation of the canonical determinant is impractical or even impossible. Instead,
we employ an efficient stochastic evaluation of the sum of the principal minors and treat the sum-
mation index set B as an additional degree of freedom of the system. Thereby, the index set B is
dynamically updated using a standard Metropolis algorithm. Starting from the index set B a new
random set B′ is proposed using Fisher-Yates reshuffling and the transition B→ B′ is accepted with
the probability pB→B′ = min[1,AB→B′ ] with

AB→B′ =

∣∣∣∣∣detT [U,Xi]A
B′AB
′

detT [U,Xi]ABAB

∣∣∣∣∣ .
Then, the remaining fields are updated keeping the index set fixed. In order for this whole pro-
cess to be practical, one needs an efficient calculation, or update, of the full matrix T . We are
using a binary tree data structure to store intermediate products, such that only O(lnLt) matrix
multiplications are necessary instead of O(Lt).
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Figure 1: Distributions of the principal minors Mn f (T ) from the stochastic evaluation of the trace and the
corresponding canonical determinant for SU(2), Lt = 24 at β = 1.2 in sector n f = 1 (left plot) and n f = 3
(right plot).

The prinicipal minors need not be positive, but can have negative signs, in which case reweight-
ing with the reweighting factors Rn f = sign(Mn f ) is required.1 As illustrated in the left plot of Fig. 1,
the Metropolis algorithm has no difficulty to tunnel between the sectors of the configuration space
which yield negative and positive contributions, but in fact samples both contributions very effi-
ciently. This is due to the fact that the Metropolis algorithm allows the proposal and occasional
acceptance of large changes of the fields on the one hand, and sign changes in the determinant from
updating the index set on the other hand. We further note that the negative contributions are ab-
solutely necessary for reweighting the configurations to different fermion number sectors, but they
are not frequent enough to generate a severe sign problem. In fact, negative contributions do not
occur in all sectors. For SU(2) for example, contributions in sectors n f = 0,6 are strictly positive,
while sectors n f = 1,5 have significant negative contributions. In sectors n f = 2,3,4 the negative
contributions are negligible, cf. right plot of Fig. 1.

Also shown in Fig. 1 are the distributions of the principal minors Mn f (T ) = detT [U,X ]ABAB

as they occur in the stochastic evaluation of the sum, i.e. the trace TrMn f , in comparison with
the distribution of the corresponding full canonical determinant divided by the number of principal
minors in the given sector. We see that the principal minors follow the full determinant very closely
and evolve the system very similarly, but their evaluation is by a factor n faster. While for SU(2)
this factor is maximally 20, for SU(3) the maximal gain is already 12870.

One peculiarity of the model considered here is the fact that it possesses so-called flat direc-
tions (moduli space) along which [Xi,X j] = 0. As a consequence, the system may suffer from Xi

running away and X2 ≡ 1/Lt ∑
Lt−1
t=0 Tr{Xi(t)Xi(t)} becoming arbitrarily large. While one can reg-

ularize the divergence with the deformation m2X2, we observe that metastable states along the flat
directions may be introduced due to an interplay between lattice artefacts and the deformation, and
the simulation consequently suffers from critical slowing down. Essentially, in those metastable
states fluctuations orthogonal to the flat direction are highly suppressed compared to those along
the flat direction, hence the standard Metropolis becomes highly inefficient. A solution to this

1Reweighting between different fermion sectors is also possible and turns out to be reliable in certain cases,
cf. Ref. [5].
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Figure 2: MC time history (left plot) and the corresponding distribution (right plot) of the moduli X2 for
SU(2) on a Lt = 8 lattice at β = 2.0 in the n f = 1 sector, once with the standard Metropolis algorithm and
once with the multiplicative random walk (MRW) algorithm.

problem is provided by the multiplicative random walk (MRW) update algorithm which updates
the bosonic fields X collectively by rescaling them by a global random factor R. In order to fulfill
detailed balance, the acceptance probability has to be chosen with care. The procedure is illustrated
in Fig. 2 where we show the MC time history (left plot) and the corresponding distribution (right
plot) of the moduli X2 for a system which is stuck in a flat direction (for SU(2) on a Lt = 8 lattice
at β = 2.0 in the n f = 1 sector). With the standard Metropolis algorithm X2 moves very slowly and
the huge autocorrelations are reflected in the completely unreliable distribution of X2. In contrast,
the MRW algorithm samples X2 very efficiently and produces a smooth distribution which in turn
allows a reliable extraction of 〈X2〉.

4. Results

We first investigate the behaviour of the stable and metastable phases as a function of the
regulator mass m in the limit m→ 0. In order to do so, we prepare the system with a starting
configuration consisting of small fluctuations around X = 0 (small random field) on the one hand
and with an added large component along a flat direction on the other hand. As can be seen from
Fig. 3, for sufficiently large m a system prepared in a phase along the flat direction always tunnels
back into the phase exhibiting small fluctuations only, while for Ltm . 0.07 the tunneling barrier is
too large and hence the system becomes metastable. The minimum of the metastable phase moves
to infinity and 〈X2〉 diverges in the limit m→ 0 as 1/(Ltm)2 to leading order. Let us emphasize
that the MRW algorithm is crucial to obtain reliable results in the metastable phase. In contrast,
simulations starting from small random field configurations seem stable and 〈X2〉 is well behaved
in the limit m→ 0. In fact, for sufficiently large Lt even simulations at m = 0 are possible.

Having clarified the role and fate of the metastable phase, we can now investigate in detail the
regulator dependence of the persisting stable phase involving small fluctuations of X . In Fig. 4 we
show the results for 〈X2〉 as a function of m from simulations of SU(2) at β = 0.5 for a range of
lattice extents Lt in some fermion number sectors, as well as for periodic and antiperiodic fermionic
boundary conditions. Here, 〈X2〉 is rescaled by Lt , and the continuum limit corresponds to Lt → ∞

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
9
5

A local fermion update algorithm for SYM quantum mechanics Urs Wenger

0 0.02 0.04 0.06 0.08 0.1
L

t
 m

0.01

1

100

10000

X
2

small random field

flat direction

SU(2), L
t
=8, n

f
=1, β=2.0

c
2
/(L

t
m)

2
 + c

1
/(L

t
m) 

0 0.02 0.04 0.06 0.08 0.1
L

t
 m

0.074

0.076

0.078

0.080

0.082

0.084

0.086

X
2

small random field
flat direction

SU(2), L
t
=8, n

f
=1, β=2.0

c
0
 + c

1
 (L

t
m) + c

2
 (L

t
m)

2

Figure 3: The expectation value of the moduli X2 as a function of the regulator mass for SU(2) on a
Lt = 8 lattice at β = 2.0 in the n f = 1 sector, once starting from a configuration consisting of small random
fluctuations, and once with a a large added component along a flat direction. The right plot is a zoom to the
small region of X2.

at fixed Ltm. Let us first discuss the lattice artefacts. For large m we observe universal scaling
behaviour independent of the lattice spacing a = β/Lt . In this regime, lattice artefacts become
very small and the degeneracy between the charge conjugated fermion number sectors is restored.
When the regulator is removed, lattice artefacts become large and the effect from the explicitly
broken charge conjugation symmetry C becomes evident. Only for the sectors n f = 2 and 4 the
C -symmetry seems to remain exact at a finite lattice spacing. In sector n f = 6 the lattice artefacts
are tiny. The latter sector corresponds to the quenched approximation, hence the leading artefacts
are expected to be O(a2) in contrast to the other sectors where they are O(a).

Next we discuss the behaviour of 〈X2〉 at m = 0 in the continuum limit. First we note that
simulations at m = 0 at finite Lt seem to be possible - apparently, the simulations are stabilized by
lattice artefacts. Towards the continuum, the fermion sectors with n f = 2,3,4 qualitatively show a
different behaviour than the sectors with n f = 0,1,5,6. For the latter, 〈X2〉 approaches a finite value
in the continuum limit, while for the former, 〈X2〉 appears to diverge. Note that this divergence has
nothing to do with the divergence in the metastable phase discussed before, but is expected due to
zero energy states and the spectrum becoming continuous in those sectors [6, 7]. Similarly, 〈X2〉 is
finite in the system with periodic b.c., because the diverging contributions from sectors n f = 2,3,4
cancel each other, while this does not happen for the system with antiperiodic b.c..

To summarize, we presented an efficient local fermion algorithm which allows simulations
in fixed canonical sectors in a completely controlled way. Hence, our approach is an alternative
to other numerical efforts investigating supersymmetric Yang-Mills quantum mechanics, such as
[8, 9].
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