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Naturalness and Supersymmetry Csaba Balázs

1. Introduction

The 2012 discovery of the Higgs boson, coupled with no sign of new physics beyond the Stan-
dard Model of fundamental particles and interactions, fueled considerable interest in naturalness
[1]. The main reason for this is the apparent fine tuning in the Higgs sector of the Standard Model.
The masses of all matter and force carrier particles are protected against quantum fluctuations by
chiral and gauge invariance in the Standard Model. These symmetries thus separate the electroweak
scale from the high scale of new physics, such as gravity. This separation of scales is considered
to be natural, since such division of phenomena structures physics itself from cosmology, through
astrophysics, condensed matter, atomic, and nuclear to elementary particle physics.

The Higgs mass, however, is unprotected against quantum fluctuations within the Standard
Model. The latter must be an effective description of nature, since it cannot account for various
observations such as dark matter, the matter-antimatter asymmetry, gravity and more. When formu-
lated as an effective field theory, with a cut-off scale Λ, due to the lack of a protective mechanism,
the Higgs mass receives quantum corrections that sensitively depend on Λ. This Standard Model
violates the separation of scales: the electroweak size Higgs mass is directly connected to, in prin-
ciple, arbitrarily high scales. This situation is considered to be unnatural: phenomena at disparate
energy scales are fundamentally connected.

A simple way to express the unnaturalness of the Standard Model Higgs sector is quantifying
the fine tuning required to obtain a 125 GeV Higgs mass. The physical Higgs mass squared is the
sum of a bare mass term and a correction

m2
H = m2

0 +δm2
H , (1.1)

with
δm2

H ∼ Λ
2. (1.2)

The Large Hadron Collider is pushing the scale of new physics Λ beyond TeV, which requires
a finely tuned cancellation between the bare mass and the quantum corrections. Simple algebra
shows that the bare mass must be within a percent of TeV size quantum corrections to yield 125
GeV physical Higgs mass.

This, however, might be an oversimplified measure of tuning. After all, the bare mass is non-
physical, and it is virtually impossible to argue about its value in a model independent way. A
more sophisticated fine tuning measure was introduced by Barbieri, Ellis, and Giudice [2, 3]. The
prerequisite of this measure is the existence of an electroweak scale observable which is predicted
by the theory. In the Minimal Supersymmetric Standard Model (MSSM) this quantity is chosen to
be the mass of the Z boson, due to the fact that the electroweak symmetry breaking condition

m2
Z

2
=

(m2
Hd

+δm2
Hd
)− (m2

Hu
+δm2

Hu
) tan2 β

tan2 β −1
−µ

2, (1.3)

directly links it to the Lagrangian parameters of the theory.
The Barbieri-Ellis-Giudice measure quantifies the sensitivity of an electroweak scale observ-

able to the change of a theory parameter. In the MSSM this measure is typically written as

∆BEG(m2
Z(µ

2)) =

∣∣∣∣∂m2
Z

∂ µ2

∣∣∣∣ , (1.4)
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with the m2
Z(µ

2) function defined by the electroweak symmetry breaking condition Eq.(1.3) at tree
level. Defined as above this fine tuning measure accounts for correlations between mZ and µ . In
qualitative terms: if the mZ prediction is sensitive to small changes in µ the theory is considered to
be fine tuned. While the Barbieri-Ellis-Giudice fine tuning measure can be used for MSSM variants,
such as constrained versions of the MSSM, when one goes beyond the MSSM the question arises:
how to generalize the measure of fine tuning to other supersymmetric theories?

More ambitiously we might ask: is there a fine tuning measure that can be applied to any
extensions of the Standard Model? The answer seems to be difficult due to the generality of the
question. Surprisingly, the answer may be simpler than expected. In the following paragraphs I
recapture the argument for the Bayesian evidence serving as a measure of naturalness.

Let us assume the existence of a Standard Model extension that adds only a single parameter
µ to those of the SM, and that this model predicts the mass of the Z boson in terms of µ2. The
Bayesian evidence for this theory is

E = V −1
µ2

∫
µ2

max

µ2
min

L (m2
Z(µ

2)) dµ
2, (1.5)

treating, for simplicity, all the Standard Model parameters as nuisances. The evidence E reflects
the plausibility of this single parameter theory in light of the measured Z mass. The likelihood
function L measures how well the model can predict mZ over the parameter space of the model. I
assumed a constant prior for the µ parameter, which yielded the

Vµ2 =
∫

µ2
max

µ2
min

dµ
2 = constant (1.6)

normalization factor.
Since the theory predicts mZ as the function of µ it is reasonable to assume that the m2

Z(µ
2)

function is differentiable and invertible. Then, via a variable change, one can integrate over the
predicted values of mZ in the evidence integral

E = V −1
µ

∫ m2
Z(µ

2
max)

m2
Z(µ

2
min)

L (m2
Z) ∆

−1
BEG(m

2
Z) dm2

Z. (1.7)

This variable change reveals the connection of the evidence integral to naturalness since it induced
the derivative ∆BEG(m2

Z(µ
2)) = dm2

Z/dµ2 which is the single parameter version of the above de-
fined Barbieri-Ellis-Giudice measure. This measure here plays the role of a Bayesian prior of the
theoretically predicted mZ values.

In the Bayesian formalism the meaning of the prior ∆
−1
BEG(m

2
Z) is the probability distribution

of the predicted mZ values within the theory. If the average value of the ∆BEG(m2
Z(µ

2)) function
is low over the parameter space then the evidence integral is enhanced. This situation corresponds
to a case when the theory has low fine tuning. Thus the value of the Bayesian evidence is clearly
correlated with the naturalness of the theory. Casting the evidence into an integral over the observ-
able reveals its meaning as the plausibility of the theory in terms of observation and naturalness.
Conversely, naturalness in the Bayesian framework is understood as the plausibility that the theory
predicts the correct value of a given observable.
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The Bayesian evidence not only calculable for any parametric model but also reveals some
implicit properties of the Barbieri-Ellis-Giudice fine tuning measure. Perhaps most importantly,
Bayesian inference justifies the derivative form of ∆BEG. By definition the evidence is an integral
over the parameters of the model. When it is recast as an integral over the predicted observables
∆
−1
BEG automatically emerges as the Jacobian of the variable transformation.

Bayesian hypothesis testing sheds light on the normalization, or scale of ∆BEG. In model
comparison the ratio of evidences is known as the Bayes factor, which quantifies the plausibility of
a model over another. This ratio is measured on Jeffreys’ scale [4]. In this context it is clear that
naturalness is the ability of a given model to predict electroweak scale observables, and it has to
be compared to the naturalness of another model. The traditional Barbieri-Ellis-Giudice measure,
at best, could only be interpreted as probability density, which has to be integrated to become an
objective measure of plausibility.

The Bayesian framework also shows us that there is some amount of subjectivity involved
when one selects which fundamental parameter of the theory and which (electroweak) observable
is used to define ∆BEG. It seems that a different kind of fine tuning is measured by the different
possible choices.

It is also enlightening to see that the exact form of ∆BEG depends not only on the choice of
parameter (such as µ or µ2 or Bµ), but also on the initial prior for the given parameter. If, for
example, the parameter value spans several orders of magnitude in the theory (before considering
any observational constrains), then it is customary to choose a logarithmic prior for it. In this case,
from the Bayesian point of view, the theoretical parameter is log µ and the induced Jacobian should
be d(log µ)/d(logmZ). According to this, whether the following forms of the fine tuning measure
are ’correct’

∆BEG(mZ) =
dmZ

dµ
or

dm2
Z

dµ2 or
d logmZ

d log µ
or

d logm2
Z

d log µ2 , (1.8)

depends on our definition of the theoretical parameter, its prior, and the experimental observable
that we want to use to quantify naturalness.

When n> 1 theoretical parameters {p1, ..., pn} are ’fixed’ in terms of n observables {o1, ...,on}
the naturalness prior takes the form of a n×n determinant

∆J(o1, ...,on) =

∣∣∣∣∣∣∣∣
∂o1
∂ p1

... ∂o1
∂ pn

. . .
∂on
∂ p1

... ∂on
∂ pn

∣∣∣∣∣∣∣∣ . (1.9)

The lessons learned from this are the following. We can measure the fine tuning within a model
with respect of several observables and parameters simultaneously. But when we do that the fine
tuning is measured by the appropriate determinant. Most interestingly, within this determinant
negative terms might compensate for the effect of the diagonal terms. In other words, it is not
the most dominant term, or the trace of the matrix of derivatives, rather the full determinant that
quantifies fine tuning.

Based on the above discussed ideas in the next section we derive the naturalness prior for
the constrained and an 11 dimensional version of the next-to-minimal MSSM (CNMSSM and
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NMSSM-11). Then we map this prior for selected two dimensional slices of the parameter space
of these models.

2. Naturalness prior for the NMSSM

In this section we derive the naturalness prior for the constrained and an 11 dimensional ver-
sion of the next-to-minimal MSSM (CNMSSM and NMSSM-11). As indicated above, ∆J depends
on the choice of parameters, which in turn is the function of the definition of the model. In this
work we define the CNMSSM at the GUT scale to have a universal gaugino mass (M1/2), a uni-
versal soft tri-linear coupling (A0), with all MSSM-like soft scalar masses being equal (M0). The
new soft singlet mass (mS0 = mS(MGUT )), however, is left unconstrained at the GUT scale. Thus
the model is parametrized by

{p1, ..., p6}CNMSSM = {M0,M1/2,A0,λ0,κ0,mS}, (2.1)

in contrast with the CMSSM

{p1, ..., p5}CMSSM = {M0,M1/2,A0,µ0,B0}. (2.2)

For a constrained spectrum generators, such as NMSPEC and Next-to-Minimal SOFTSUSY
[5], trade the GUT scale parameters λ0,κ0 and m2

S for weak scale λ ,mZ and tanβ giving the user
the mixed scale input parameters of (M0,M1/2,A0, tanβ ,λ ,mZ), that is λ in addition to the usual
CMSSM inputs used in spectrum generators. This transformation gives rise to a Jacobian

dλ0dκ0dm2
S0
= JT0dλdm2

Zd tanβ , (2.3)

which may be written as

JT0 = JT λ
κmS

JRG =

∣∣∣∣∣∣
∂κ

∂m2
Z

∂m2
S

∂m2
Z

∂κ

∂ tanβ

∂m2
S

∂ tanβ

∣∣∣∣∣∣
λ

∣∣∣∣∣ ∂λ0
∂λ

∂κ0
∂λ

∂λ0
∂κ

∂κ0
∂κ

∣∣∣∣∣
∣∣∣∣∣∂m2

S0

∂m2
S

∣∣∣∣∣ . (2.4)

The Jacobian JT λ
κmS

can be rewritten in terms of simpler coefficients embedded in the determinant
of a three by three matrix. The coefficients appearing in this determinant are given in the appendix
of Ref. [6]. The second Jacobian JRG transforms the input parameters from the GUT scale to
the electroweak scale, and factorizes as shown due to the supersymmetric non-renormalization
theorem. The subscript λ indicates that this parameter is kept constant in the derivatives.

As explained, we can choose to work with the logarithms of parameters (as is natural if we
choose logarithmic priors) so that we obtain a new factor in the denominator, which is the inverse
of the Jacobian with logarithms inserted inside the derivatives. This gives us

∆
CNMSSM
J =

∣∣∣∣∣∂ ln(m2
Z, tanβ ,λ )

∂ ln(κ0,m2
S0
,λ0)

∣∣∣∣∣ =
κ0m2

S0
λ0

m2
Z tanβλ

J−1
T0

(2.5)

It is well known that the top quark Yukawa coupling can play a significant role in fine tuning so
we also considered this by extending the transformation to include the top quark mass and (unified)
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Yukawa coupling: {κ0,m2
S0
,λ0,y0} → {m2

Z, tanβ ,λ ,mt}. Nonetheless as was already observed in
the MSSM case [7, 8], we found that all the derivatives, other than ∂mt

∂yt
, that involve mt and yt

cancel, so this only changes the Jacobian by a single multiplicative factor of ∂mt
∂yt

. Finally when

logarithmic priors are chosen this factor will disappear entirely because ∂ lnmt
∂ lnyt

= 1, and the Yukawa

renormalization group evolution (RGE) factor ∂ lnyt
∂ lny0

is the same order one constant (at 1-loop) as
in the CMSSM case so we neglect it.

Therefore we write our NMSSM Jacobian based tuning measure as

∆
CNMSSM
J =

∣∣∣∣∣∂ ln(m2
Z, tanβ ,λ ,m2

t )

∂ ln(κ0,m2
S0
,λ0,y2

0)

∣∣∣∣∣ , (2.6)

with the additional transformation between mt and y0 included to emphasise that we have also
considered these, since the cancellation will prove to be rather important (in both the MSSM and
NMSSM) when we compare against the Barbieri-Ellis-Giudice tuning measure in the focus point
(FP) region. There we will show that due to this cancellation we do not see a large tuning penalty
in the much discussed FP region, which appears in the Barbieri-Ellis-Giudice measure when one
includes yt as a parameter [9, 10, 11, 12].

The expression given here is formally the Jacobian which should be used in the Bayesian
analysis of any NMSSM model when (λ0,κ0,m2

S0
,y2

0) are traded for (m2
Z, tanβ ,λ ,m2

t ). At the same
time ∆CNMSSM

J can be interpreted as a measure of the naturalness of the NMSSM, which may be
applied to the CNMSSM, the general NMSSM and λ -SUSY scenarios.

As it was argued in the recent literature [13], the above Jacobians can also be considered
to measure fine-tuning from a purely frequentist perspective. In this context the same Jacobians
appear as part of the likelihood function after one includes observables in χ2 which are related to
the scale of electroweak symmetry breaking, such as the mass of the Z boson. Just as above, the
variable transformation from these observables to fundamental parameters induces the Jacobian,
which can be interpreted as a part of the likelihood that measures the sensitivity of the predicted
electroweak scale to the fundamental parameters of the model. Steep derivatives of the relevant
observables with respect to the chosen fundamental parameters signal a strongly peaked likelihood
function, indicating that χ2 drops off rapidly from the best fit value as those parameters are changed,
which is indicative of high fine-tuning. The Bayesian perspective offers additional insight into the
reasons we might dislike such behavior in our likelihood functions, since in the frequentist case
the actual best fit χ2 does not suffer a penalty for any tuning observed in its vicinity, while in the
Bayesian case there is a clear and direct penalty originating from the small prior–likelihood overlap
that such behavior implies.

3. Numerical results

For our numerical analysis we use SOFTSUSY 3.3.5 for the MSSM [14], and NMSPEC

[15] in NMSSMTools 4.1.2 for the NMSSM. Next-to-Minimal SOFTSUSY [5] was still
in development during this analysis but was used to cross check the spectrum for certain points.
MultiNest 3.3 was used for scanning [16, 17]. Both spectrum generators used here provide

6
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Figure 1: The left frame shows maps of fine tuning measures ∆BEG (top), ∆J (middle), ∆EW (bottom) in the
M0 vs. M1/2 plane for A0 = −2.5 TeV, tanβ = 10 and sgn(µ)=1 in the CMSSM. The color code quantifies
the value of ∆EW and ∆J . Since ∆BEG is dominated by the µ derivative it is low in the small M0 and M1/2
region. Although ∆BEG, by definition, is formally part of ∆J the numerical behavior of the latter is similar
to that of ∆EW . All massive parameters are in GeV unit. No experimental constraints applied except that
the lightest supersymmetric particle is electrically neutral and the EWSB condition is satisfied. Right frame:
Same as the left frame except for the constrained NMSSM. A0,κ,λ =−2.5 TeV and tanβ = 10 are assumed.
λ is sampled from the range [0,0.8].

∆BEG with renormalization group flow improvement. For ∆BEG in the CMSSM we include individ-
ual sensitivities, ∆BEG(pi), for the set of parameters M0,M1/2,A0,µ,B,yt . For the CNMSSM we
use the set M0,M1/2,A0,λ ,κ,yt .

First we examine how the tuning measures vary with M0 and M1/2, without requiring a 125
GeV Higgs. We fix tanβ = 10, where the extra NMSSM F-term contribution is small, but there
is interesting focus point (FP) behavior [9, 10, 11, 12]. Previous studies [18] show that large and
negative A0 is favoured, so to simplify the analysis here and throughout we choose1 A0 = −2.5
TeV.

The results for the CMSSM are shown in FIG. 1. The value of ∆EW [19] is governed by the
m2

Hu
and µ2 contributions since m2

Z/2≈−m2
Hu
−µ2, where m2

Hu
includes the radiative corrections.

In general ∆EW is dominated by µ2, while the crossover to the m2
Hu

dominance occurs in the vicinity
of the EWSB boundary. For this measure there is low fine tuning even at large M0. This may seem
counter intuitive, but for tanβ = 10 at large M0 we are close to a FP region. In this region the
dependence on M0 which appears from RG evolution of mHu vanishes. For example in the CMSSM
semi-analytical solution to the renormalisation group equations (RGEs),

m2
Hu

= c1M2
0 + c2M2

1/2 + c3A2
0 + c4M1/2A0, (3.1)

1We checked that with alternative A0 choices the behaviour is similar. The main difference is with the Higgs masses
where a large and negative A0 was chosen to increase the lightest Higgs mass.
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the coefficients ci are functions of Yukawa and gauge couplings, and tanβ and c1 can be close to
zero. Such regions then appear to have low fine tuning even with large M0 since the small size of
c1 means there is no need to cancel the large M0 in Eq. (1.3) to obtain the correct m2

Z .
In ∆BEG, however, the sensitivity to the top quark Yukawa coupling is included. Since the RG

coefficients depend on this Yukawa coupling, the large stop corrections from the RGEs that feed
into m2

Hu
lead to a large ∆BEG(yt) even in the focus point region. ∆EW is not sensitive to this effect

since it does not take into account such RG effects. Interestingly ∆CMSSM
J exhibits similar behavior

to ∆EW despite containing derivatives from ∆BEG. This is because ∆CMSSM
J does not contain the

derivative of mZ with respect yt [6]. As a result ∆J in the MSSM can remain small in the focus
point region.

Fine tuning measures for the CNMSSM are shown in the right fram of FIG. 1. Here ∆CNMSSM
J

is defined by Eq. (2.6) and ∆BEG is defined in Ref. ([6]), while ∆EW is defined the same as for the
MSSM. The parameter µ dominates electroweak tuning, ∆EW , throughout the M0 vs. M1/2 plane.
Since µ values and related derivatives are similar in the CMSSM and CNMSSM the fine tuning
measures are qualitatively similar for the two models. As in the CMSSM the Jacobian derived
tuning ∆J increases with M1/2, as anticipated since for large M1/2 large cancellation is required to
keep mZ light. Again though at large M0 ∆J can still be low seeming to favour this FP region, which
is a result of the same cancellation as happened in the MSSM case occurring in our new NMSSM
Jacobian.

Interestingly the region where the tuning can be very low extends further in the NMSSM.
Note this is not a result of raising the Higgs mass with λ since we impose no Higgs constraint yet
and have large tanβ . However λ is varied across the plane and affects the EWSB condition and
the renormalization group evolution. However since the number of parameters are different in the
CNMSSM and CMSSM, to determine whether the CNMSSM is preferred over the CMSSM, we
have to compare Bayesian evidences.

4. Conclusions

In this work we presented Bayesian naturalness priors to quantify fine tuning in the (N)MSSM.
These priors emerge automatically during model comparison within the Bayesian evidence. We
compared the Bayesian measure of fine tuning (∆J) to the Barbieri-Giudice (∆BEG) and ratio (∆EW )
measures. Even though the Bayesian prior is closely related to the Barbieri-Giudice measure, the
numerical value of the Bayesian measure reproduces important features of ∆EW . Both ∆EW and ∆J

are low in focus point scenarios.
Our numerical analysis is limited to fixed (A0, tanβ ) slices of the constrained parameter space.

For these slices we show that, according to the naturalness prior, the constrained version of the
NMSSM is less tuned than the CMSSM. This statement, however, has to be confirmed by compar-
ing Bayesian evidences of the models. The complete parameter space scan and the full Bayesian
analysis for the NMSSM is deferred to a later work.
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