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1. Introduction to the initial condition problem

The new results obtained by PLANCK collaboration [1, 2] have favored a new class of infla-
tionary models characterized by a special feature: the part of the potential that implements inflation
is a plateau. This class of models includes the Starobinsky model [3], the Higgs inflation [4] as
well as the so called a-attractors [5,6]. On the contrary, many of the inflationary models that were
commonly used in the past have been ruled out with the most notable example the V(¢) = m?¢>
large field model which is at the edge of the 99% CL contours of the 2015 PLANCK analysis.

The selection of the plateau-like inflationary models and the exclusion of the steep ones by the
last observational data is certainly a success of the inflationary theory for it certifies its predictive
power. At the same time, however, the plateau potentials may question the generality of the cosmic
inflation phase because special initial conditions seem to be required [7-12]. A representative
example of the plateau potentials is the Starobinsky model which is an f(R) = R + R? gravity
theory. In the dual picture it yields a potential for the scalaron ¢ that reads

. 2
Ve (@) = Vinp (1 —e_\/;‘P/MP) ; (1.1)

where Ving the upper bound of the inflationary energy density, Ving ~ 107 1M} < M3. These
potentials are not capable to drive an inflationary phase right after the Planck era implying that our
Universe started with a decelerating phase (d < 0) instead of an accelerating one (d > 0).

It is very motivated the inflationary phase to initiate close to the Planck energy scale because
it assures the natural creation of our observable Universe without rather special initial conditions.
Indeed, even a fundamentally small initial patch of Planck length radius /p when dominated by
the potential energy of the inflaton field, 3¢+ (V@ /a)* S V() ~ piot ~ M3, starts expanding
in an accelerating manner. The essential implication of this accelerated expansion is the presence
of a nearly constant event horizon distance with size ~ [p, that is, of the order of the curvature
scale, the so-called Hubble radius. The event horizon profects the initial smooth patch from the
outside inhomogeneous regions where the gradients of the field are nonzero. Otherwise, if the
event horizon had been unbounded, the inhomogeneities would have propagated and infested the
initial smooth patch, spoiling the inflationary phase.

If inflation is unable to start at energies close to the Planck scale then the minimum size of
the initial homogeneous patch has to be much larger than [p. Given the smallness of the plateau
energy density, ViNr, one has to assume that a kinetic-energy domination regime preceded the
inflationary phase. One finds for plateau potentials that the density inhomogeneities have to be
expelled at least 10° Hubble scales farther if the Universe has emerged from the Planck density,
Mp = (2.4 x10'8GeV)* [13].

The realization of inflation requires a homogeneous patch of minimum radius about H~! (¢ =
fing) Which can exist only if the primary patch at fini, H ' (tivg) a(tinid) /a(tivF), is surrounded by
a supplementary homogeneous shell of width equal to the event horizon distance deyent (finit, 7INF)
[12-15], see figure 1.

For flat space and #;pj; ~ tp and fiNg ~ VI%\I/}? the required homogeneous volume, (4/3) nDﬁomog (tp),
is at least 10! times bigger than (4/3)ml} which means that, initially, hundreds of billions of
causally disconnected regions were much similar without any dynamical reason. Briefly we call
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Figure 1: A schematic illustration of the minimum homogeneous patch at two different times: right after
the Planck time, ¢ = ¢p, and at the onset of inflation, #yng ~ 10°p. Its radius at zp is Dy = Dhomog (tp) and at
HNE 18 ‘ng_Ni: ~ 105lp.

1000

500

i homogeneous ]
-500- initial patch 1

—-1000

Figure 2: The figure illustrates schematically the initial conditions problem for the plateau inflationary
models as the Starobinsky R? where Ving ~ 1071°M3. The delayed inflationary dynamics imply that right
after the Planck time hundreds of billions of causally disconnected regions (CDR) have to be homogeneous
in order not to spoil the onset of inflation (D}, = Dhomog (7P))-

them CDR (Causally Disconnected Regions). We consider the [p as the causal horizon at Planck
times. We find that for an open Universe the number of CDR required to be homogeneous is larger
compared to the flat case, while for a closed Universe the number is decreased about an order of
magnitude, albeit the CDR remains formidable large [13]. In fact, these are much special initial
conditions for the R> model and any similar plateau potential inflationary models.

There are suggestions for non-trivial pre-inflationary topologies which can address the initial
conditions problem, see [16-18] for compact flat or open Universe with size which can be less
than H~!. Also, it is possible to design scalar potentials which exhibit different inflationary stages
starting from Planck densities and ending up at a plateau-like part, see e.g. [19]; or to invoke the



Supergravity cosmology Toannis Dalianis

well motivated non-minimal couplings that yield an effective potential which is flat enough to fit the
data with inflation starting from Planck densities [20-23]. Here we focus on the plateau potentials
that are particularly favoured by the data and trigger intriguing questions concerning the initial
conditions problem. We note that the plateau inflationary trajectory, if sufficiently stable, can yield
N 2 60 e-foldings and no special fine tuning of the initial values for the fields is required as happens
to other models, see e.g. [24,25].

2. Inflationary models with plateau potentials

A very motivated approach to the description of inflation is to consider it as a pure gravitational
effect. The Einstein-Hilbert action Sgy = M3,/2 [ d*x/—gR is non-renormalizable and should be
understood as an effective theory that describes the low energy degree of freedom of gravity which
is the spacetime metric g;y. Given our ignorance about the UV completion of gravity, the simplest
extension beyond minimal GR is to write the low-energy effective action including all the terms
consistent with general coordinate invariance expanded as

2
M, Pl

1
5 R+aR*+BRYRyy + — (cRP+..) +...| . 2.1

MZ

Seff = /d“x\/ -8 |:M/‘{+

If this expansion has any relevance with the inflationary dynamics then the cosmological observa-
tions indicate that the aR* term has to dominate over the others. Keeping the R + R? terms and
neglecting the higher order terms then the Starobinsky model is obtained. This precise cut-off at
the quadratic order, although it is fully consistent with the state-of-the-art cosmological data sets,
still lacks a concrete theoretical explanation. The addition of any higher order term is enough to
ruin plateau inflation [26,27]. Still the fact that the R 4 R? successfully fits PLANCK results may
provide an insight into the form of the action (2.1) and the effective description of the fundamental
theory of gravity at the particular energy scales. Moreover, the R 4 R” gravity can be elegantly
embedded in a supergravitational framework and accommodate an inflationary phase [26,28-32].

Another type of plateau potentials is the Higgs inflationary model. After the discovery of
the first, and only till today, elementary scalar particle at CERN, it is reasonable to postulate that
the inflaton field is the Higgs field itself. The Higgs field ¢ can implement inflation if it is non-
minimally coupled to gravity with f(@)R particularly designed, f(¢) = M%l +E¢? [4]. In the
Einstein frame the canonically normalized Higgs inflaton experiences a potential identical to the
R? plateau potential. This is actually one of the simplest inflaton models compatible with our
knowledge of particle physics. The model is phenomenologically strongly motivated, however,
any profound theoretical reasoning for the absence of the higher order terms is eluding.

Also, several broad classes of inflationary potentials that feature a plateau and can fit the
PLANCK data have been constructed in the context of supergravity and superconformal theory. The
most general class is called o-attractors [5,6]. For particular values of the parameter ¢ these models
give the same predictions with the Starobinsky and the Higgs inflation model. The parameter o is
related to the inverse curvature of the Kidhler manifold.

We now turn to the initial conditions problem focusing on the characteristic plateau potential
of the R + R? pure gravity and pure supergravity models. Our calculations are performed in the
Einstein frame, see [33] for a different approach.
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3. Initial conditions in R -+ R? supergravity

Minimal supergravity has two different formulations: the old-minimal and the new minimal.
One of the objectives is to examine whether the embedding of the Starobinsky model in mini-
mal supergravity renders it more motivated in terms of the inflationary initial conditions problem.
We report an affirmative answer to this question: the initial conditions are significantly relaxed,
however, not fully addressed. The reason is the presence of the dynamical pure supergravitational
auxiliary fields.

The old-minimal supergravity multiplet contains the graviton (e%,), the gravitino (y<), and a
pair of auxiliary fields: the complex scalar M and the real vector b,,. Supersymmetric Lagrangians
with curvature higher derivatives also introduce kinematic terms for the “auxiliary” fields M and b,,,.
The embedding of the Starobinsky model of inflation in old-minimal supergravity in a superspace
approach consists of reproducing the Lagrangian

M3 M3
“1ep_ _Mp P p2
e L= > R+ 12m2R . (3.1
This is achieved by [26,28-30,32]
2 4 4 7 C 2 o722
L =3} [@OF 1=~ adr >R (32)
m 3m

Modifications and further properties can be found in [27,31,34-42]. The superspace Lagrangian
has a classically equivalent description as standard supergravity coupled to additional superfields
T and S. The field S remains strongly stabilized and does not affect the evolution. The real and
imaginary parts of 7 field are related to the ¢ and b that experience the potential

V

S

3 2 1
weraie (9,0) = M3 (1 _ e*\/gw/MP) + 5nfe*zx/%"’/’”f’bz. (3.3)
The dynamical evolution of the pre-inflationary stage consists of two phases:

1. From Vo2 = M3 to Viuegrar? 2 m>M3, both ¢ and b participate in the evolution with the ¢
field rolling first.

2. At Viorape =~ m>M3 starts the standard Starobinsky inflationary phase with ¢ driving infla-
tion, and b now strongly stabilized and integrated out.

In the non-supersymmetric Starobinsky, the energy density p has to be dominated by the ki-
netic term ¢?/2 as long as p > Ving which translates into an equation of state w = 1. On the other
hand, in the Starobinsky supergravity model the pre-inflation expansion of space is much faster and
so the event horizon is much smaller, see figure 3. We find that the minimum number of the CDR
contained in the initial homogeneous region of radius Dyomog is [13]

4 3
Vﬂat(DhomogaWsugraRz) _ 5764D ho;nog ~ 10° CDR. 3.4
Vi (Ip) 37lp

Compared to the non-supersymmetric case, in the R + R? supergravity the required initial homoge-
neous volume is about a million times smaller.
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Figure 3: The left panel shows the equation of state, w, for the supergravitational system of fields. The
initial conditions chosen are equipartition of energy between kinetic and potential thus w = 0 initially. For
some period it is w ~ —1/9 and at fing >~ 0.7 X 10°#p the equation of state becomes w ~ —1/3 and accelera-
tion starts. The nearly de-Sitter phase w ~ —1 starts after 3 x 10°tp. The right panel shows the evolutions of
the cosmological scale factor. The solid lines correspond to solutions for the scale factor of the conventional
Starobinsky (lower, blue) and the Starobinsky supergravity (upper, red). The initiation of the accelerating
phase is apparent after #ivg. The dashed lines close to the solid ones are the constant equation of state
approximations. The lower blue dashed corresponds to the w = 1 equation of state and describes exactly
the evolution of the scale factor before inflation for the Vi case; the green dashed corresponds to constant
w = —1/9 which approximates well the Viugrar? case until, roughly, the onset of inflation. The upper black
dashed line corresponds to background spatial geometry of negative curvature for the conventional Starobin-
sky plateau inflationary potential.

The new-minimal supergravity multiplet contains the graviton field ef,, the gravitino y
which are physical fields, a real auxiliary vector A, which gauges the U(1) R-symmetry and a
two-form auxiliary field B,,,. The evolution appears similar to the old-minimal case however, here,
there is a background vector field with non-vanishing value ¥; = () which breaks the isotropy
of the space. Hence, the scale factor and the event horizon distances in the directions parallel and
perpendicular to the vector evolve differently.

The minimum homogeneous region required at f,;; = fp for inflation to start at #iyg in the
new-minimal supergravity has volume [13]

4 ! _ a(t, 2
Vhomog(tP) =57 <déeent(tf’7tmax) +H 1(tINF) ( P) )
3 a(tivr)
<(

I
dzﬁiﬁ) )

where d..., the event horizon in the x — y plane, d%.,, in the z-direction and a, ¢ the two scale

3.5

X <dezvent(tPatmax) + H_l (ZINF)

factors. At the onset of inflation the contribution of the vector fields in the energy density is sub-
dominant and the initial patch that gets inflated has a spherical volume V = %TCH ~3(#vr). However,
the initial homogeneous volume (3.5) is an oblate spheroid. The number of the causally discon-
nected regions is found numerically to be of the order

Vﬁat, homog (tP)

~ 10’ CDR. 3.6
%nl% (3-6)
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3.1 The curvature term

The present data find no evidence for any departure from a spatially flat geometry [43]. It is
actually inflation itself that addresses the puzzle of the observed flatness of the Universe. Nonethe-
less, before inflation a homogeneous initial patch is expected to feature either a closed or an open
FLRW geometry.

Closed Universe
When the Universe has a positively curved geometry there is a moment fy,;, the Universe reaches
its maximum size and the evolution turns from expansion to collapse. Inflation has to start before
turm that i p(fiNF) > Pelosed @and we find the initial radius. In the Starobinsky model when the
initial Universe emerged from the Planck, possibly quantum gravity, era it must have had a radius
a(tp) = ajni of at least a few thousand times the fundamental Planck length. This is a formidable
radius for theories that attempt a quantum description of the genesis of our Universe [44—46]. If it
had any smaller size it would have collapsed before inflation begins.

In the Starobinsky supergravity model, potential energy density values V,yr.z2 (@) > ViNF are
possible. The lower bound on the minimum radius of the 3-sphere is found to be about 17 times

the Planck length. The entire volume V> , contains

2.3
Velosed ~ 2m 4ai“i§min ~2 % 10* CDR, (3.7
Velosed (IP) 3 TCZP

for finiy = tp Which is again millions of times less severe condition.

Open Universe

When the Universe is open the space corresponds to a hyperbolic plane that has an infinite volume.
We mention that here we are interested only in the local geometry of space inside the Hubble radius
not globally. The imaginary radius of the open Universe can take small values such as the Planck
length and expand fast and endlessly. The curvature term can dominate over the energy density
and dilute the matter till the energy is redshifted to the value of the inflationary plateau Ving. Then
the inflationary evolution takes over, spacetime becomes approximately de Sitter and the negative
curvature term asymptotically vanishes. However, if the initial radius of curvature a(zp) is about the
Planck length then the volume enclosed in a sphere of radius Dhomog ~ 14.a(tp) is remarkably large
in such a highly curved hyperbolic space. We find that the number of the causally disconnected
regions is astonishingly large

Vopen (D homog )

~2.7% 10" CDR, 3.8
Vopen(lP) ( )

at the initial time #;,;; = fp.

4. Conclusions

We investigated the plateau inflationary potentials and focused in particular on R 4 R? gravity
and supergravity models for inflation - known also as Starobinsky models. Plateau potentials are
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Figure 4: The figure depicts the number of the causally disconnected regions (# CDR) right after the Planck
time required to be homogeneous in order for inflation to start and it manifests the initial conditions problem
for the low-scale inflationary models in general. The horizontal axis is the time that inflation starts. For the
R+R? (super)gravity models the #NF is fixed by the CMB with AN ~ m ~ 10 1p.

particularly motivated after the release of the PLANCK 2013 results, however, they account for
low energy scale inflaton models, requiring a rather extended acausal homogeneity in order for
inflation to occur. We demonstrated that the problematic issue of the initial conditions is less severe
if supergravity is realized in nature due to the extra directions in the field space that can implement
a relatively fast expansion rate before inflation. For flat (closed) background geometry for the
Universe, the R + R? gravity requires a huge initial homogeneous patch (huge initial 3-sphere) that
contains about 10!! causally disconnected sub-patches while in the R4 R? supergravity this number
is about 10° — 10° times smaller, see figure 4.

We considered topologically trivial FLRW geometries. The homogeneous patch of radius
Dhomog 1s enclosed in a smaller volume when k = 1 and in a larger one when k = —1:

#CDR(closed) < #CDR(flat) < #CDR(open) . 4.1)

In addition, the study of the pre-inflation supergravitational dynamics revealed interesting fea-
tures such as the initial conditions that give sufficient number of e-foldings, that can avoid the eter-
nal process of self-reproduction, and generate a remarkable, however ephemeral, anisotropy [13].
The investigation of the initial conditions for inflation can give us insights about the UV completion
of gravity and might indicate a non-trivial topology for the Universe.

Our results, regarding the initial conditions problem and for a trivial topology, point towards
k = 1 and theories with extra field dimensions such as the R + R? supergravity theory.
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