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symmetries to a Lagrangian invariant under ∆(27), I use the invariant approach to systematically
study Yukawa-like Lagrangians with an increasing field content in terms of ∆(27) representations.
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Family symmetries and CP I. de Medeiros Varzielas

1. Introduction

This contribution to the proceedings of Planck 2015 follows closely the layout of the seminar
I presented in the conference. I include here an expanded discussion of situations with multiple
∆(27) singlets and triplets, studied recently in [1, 2, 3].

1.1 Why study CP?

Flavour is an unsolved problem in the Standard Model (SM) and the same can be said of CP
phenomena, which are currently not well understood. When combined these constitute the flavour
and CP problems of the SM but also of extensions like Supersymmetry.

The Baryon Asymmetry of the Universe can not be quantitatively accounted for in the SM, and
the experimental bound on CP violation in the strong sector is extremely small. In the SM there is
CP violation only in association with the Yukawa couplings of the quark sector, although experi-
mental verification of CP violation in the lepton sector may soon be achieved by the increasingly
precise neutrino oscillation experiments.

It is very timely to consider what are the most promising solutions to these kind of problems
and possibly make predictions of what would be the observed phases in the PMNS leptonic mix-
ing matrix. A recent ambitious example is the A4× SU(5)× CP model studied in [4, 5], which
simultaneously solves the strong CP problem, predicts all the CP phases of the PMNS and, through
leptogenesis, links this prediction with the Baryon Asymmetry of the Universe.

Given that there are good reasons to study CP, I now consider how one may do so.

1.2 The invariant approach

The invariant approach (IA) to CP is not new [6]. It starts by splitting the Lagrangian into LCP,
that automatically conserves CP (e.g. kinetic terms, gauge interactions) and Lrem., the remaining
part:

L = LCP +Lrem. . (1.1)

Subsequently:

• Impose the most general CP transformations (that leave LCP invariant).

• Apply them and see if it restricts Lrem..

The possibility of (explicit) CP violation only exists in the Lagrangian if the most general CP
transformations constrain the Lagrangian (i.e. restrict Lrem.).

The IA is powerful because:

• Gets results just from the Lagrangian.

• Independent of basis.

• Shows relevant quantities for physical processes.

A review of the IA for SM leptons is present in [1, 2].
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2. Invariant approach and family symmetries

As shown by its innovative application to cases with family symmetries [1], the IA proves to
be particularly useful because the CP-odd invariants (CPIs) can be constructed directly from the
Lagrangian, without knowledge of the family symmetry, and then used together with the specific
structures enforced by the family symmetry on e.g. the Yukawa couplings. This becomes clearer
when discussing specific examples, focused on trilinear terms which I refer to as Yukawa-like
couplings, as most cases I consider here are meant as fermion-fermion-scalar terms.

2.1 Discrete groups

An interesting example of the use of CPIs with discrete groups arises from applying a rele-
vant SM lepton sector CPI, I1, constructed similarly to the quark sector CPI in [6]. Defining the
Hermitian combinations Hν ≡ mνm†

ν and Hl ≡ mlm
†
l [1]:

I1 ≡ Tr [Hν ,Hl]
3 . (2.1)

It turns out that I1 is useful to analyse a Lagrangian with A4 family symmetry determining the mass
structures to be [1]:

mν = α

 2 −1 −1
−1 2 −1
−1 −1 2

+β

1 0 0
0 0 1
0 1 0

 , β + γ

0 0 1
0 1 0
1 0 0

+δ

0 1 0
1 0 0
0 0 1

 , (2.2)

in a basis where ml is diagonal. The structures β , γ , δ each correspond to contractions to a different
singlet of A4 (β corresponds to the trivial singlet). With Hl diagonal, I1 is

I1 = 6i(m2
µ −m2

e)(m
2
τ −m2

e)(m
2
τ −m2

µ)Im(H21
ν H13

ν H32
ν ). (2.3)

CP conservation requires I1 = 0 and since there are no mass degeneracies the relevant quantity is:

Im(H21
ν H13

ν H32
ν ) =−Im(βδ

∗+ γβ
∗+δγ

∗)Re(R) (2.4)

where R is a rather complicated expression,

R = 27|α|4−6|α|2|β + γ +δ |2 + |γδ |2 + |δβ |2 + |βγ|2

+ 4|β |2(γδ
∗)+4|γ|2(δβ

∗)+4|δ |2(βγ
∗)

+ −6α
∗2(β 2 + γ

2 +δ
2−βγ−δβ − γδ )

+ 2β
∗2(γ2 +δ

2 + γδ )+2γ
∗2(δ 2 +δβ )+2δ

∗2
βγ.

The conclusion is a result known previously in the literature, that this type of A4 model automati-
cally conserves CP, in the presence of only 1 singlet (this corresponds effectively to having 2 out
of β , γ , δ equal to zero and therefore I1 = 0). This brief A4 example also serves to show that the
IA is useful beyond the ∆(27) cases which I focus on here.
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2.2 ∆(27)

In the following sections some knowledge of ∆(27) is useful. I define ω ≡ ei2π/3, c (for cyclic)
and d (for diagonal) as the relevant generators (ω3 = 1, c3 = d3 = 1). The irreducible representa-
tions are 1 or 3 dimensional - singlets and triplets. Generators act on singlets by multiplying with a
phase: c1i j = ω i1i j and d1i j = ω j1i j, where i, j = 0,1,2 for a total of 9 singlets. In a suitable basis
the generators act on a 301 triplet A = (a1,a2,a3)01 or a 302 triplet B̄ = (b̄1, b̄2, b̄3)02 as:

c30 j =

0 1 0
0 0 1
1 0 0

 , c301

a1

a2

a3

=

a2

a3

a1

 , (2.5)

d301 =

1 0 0
0 ω 0
0 0 ω2

 , d302 =

1 0 0
0 ω2 0
0 0 ω

 . (2.6)

The nomenclature for the generators represents their action on triplets. d distinguishes 301 and 302

according to their subscripts, which are the powers of ω on the first two diagonal entries of the
respective matrix. I refer to 301 as the triplet representation and to 302 as the anti-triplet represen-
tation. c cyclically permutes the components equally for triplet and anti-triplet.

Singlet product leads to a singlet transforming with the sum of the indices (modulo 3): 1i j×1kl

transforms as 1(i+k)( j+l). The product of triplet with anti-triplet is the sum of all nine singlets,
including the trivial singlet

[AB̄]00 ≡ (a1b̄1 +a2b̄2 +a3b̄3)00 , (2.7)

which is the SU(3) invariant contraction, and the 8 non-trivial singlets

[AB̄]01 ≡ (a1b̄3 +a2b̄1 +a3b̄2)01 , (2.8)

[AB̄]02 ≡ (a1b̄2 +a2b̄3 +a3b̄1)02 , (2.9)

[AB̄]10 ≡ (a1b̄1 +ω
2a2b̄2 +ωa3b̄3)10 , (2.10)

[AB̄]11 ≡ (ωa1b̄3 +a2b̄1 +ω
2a3b̄2)11 , (2.11)

[AB̄]12 ≡ (ω2a1b̄2 +ωa2b̄3 +a3b̄1)12 , (2.12)

[AB̄]20 ≡ (a1b̄1 +ωa2b̄2 +ω
2a3b̄3)20 , (2.13)

[AB̄]21 ≡ (ω2a1b̄3 +a2b̄1 +ωa3b̄2)21 , (2.14)

[AB̄]22 ≡ (ωa1b̄2 +ω
2a2b̄3 +a3b̄1)22 . (2.15)

2.2.1 ∆(27) and adding CP

I will now study the CP properties of a specific ∆(27) invariant Lagrangian with a triplet A,
anti-triplet B̄, and singlets C, D (respectively 301, 302, 110, 101):

LCD = yc(AB̄)20C10 + yd(AB̄)02D01 +H.c. . (2.16)
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Now I add a specific CP transformation, like the trivial CP transformation CP1 acting A, B̄, C and
D as:

CP1A = A∗ = (a1∗,a2∗,a3∗)02 , (2.17)

CP1B̄ = B̄∗ = (b̄∗1, b̄
∗
2, b̄
∗
3)01 , (2.18)

CP1C10 = C∗20 , (2.19)

CP1D01 = D∗02 . (2.20)

Note that A∗, B̄∗, C∗, D∗ are respectively 302, 301, 120, 102 (reflected by the indices and labels).
Imposing invariance under CP1 on LCD, the yc term which CP1 transforms to:

→ yc(a1∗b̄∗1 +ωa2∗b̄∗2 +ω
2a3∗b̄∗3)20C∗20 , (2.21)

should become the H.c., with y∗c :

y∗c(a
1∗b̄∗1 +ω

2a2∗b̄∗2 +ωa3∗b̄∗3)10C∗20 . (2.22)

Beyond the coefficient being conjugated, the expressions are different (noted by their labels). In-
stead, CP1 transforms the yd into:

→ yd(a1∗b̄∗2 +a2∗b̄∗3 +a3∗b̄∗1)01D∗02 , (2.23)

which compares to its H.c. with y∗d :

y∗d(a
1∗b̄∗2 +a2∗b̄∗3 +a3∗b̄∗1)01D∗02 . (2.24)

Apart from conjugating yd the expressions are the same. This reveals that the CP1 transformed
expression is not invariant under ∆(27) for arbitrary yc (adding the subscripts will not make a
trivial singlet). LCD is only invariant under both ∆(27) and CP1 if yc = 0 (and yd to be real) or
conversely, keeping yc 6= 0 explicitly violates either ∆(27) or CP1.

Although imposing a specific CP transformation can force coefficients to vanish, this does
not imply CP violation occurs if those coefficients do not vanish. LCD with arbitrary yc and yd

is actually CP conserving. More considerations on adding CP to family symmetries and ∆(27) in
particular can be found in [2], where changes of basis are considered.

2.2.2 ∆(27) just singlets

To illustrate how the IA proceeds, I start with Yukawa-like terms without ∆(27) triplets. I
name singlets under ∆(27) hi j, the label means it is a 1i j. With h00, h01, h10, the Yukawa-like terms
are [3]:

LIII =z00h00h00h00 + z01h01h01h01 + z10h10h10h10

+y00h00h00h†
00 + y01h00h01h†

01 + y10h00h01h†
01 +H.c. . (2.25)

The next step is to consider the most general CP transformation for each field, each singlet trans-
forms with its own phase pi j

hi j→ eipi j h∗i j . (2.26)
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For LIII to remain invariant under these transformations leads to a set of necessary and sufficient
conditions for CP conservation

z00ei3p00 = z∗00 , z01ei3p01 = z∗01 , z10ei3p10 = z∗10 , (2.27)

y00eip00 = y∗00 , y01eip00 = y∗01 , y10eip00 = y∗10 . (2.28)

By combining conditions that cancel dependence on the CP transformations one obtains CPIs. A
CPI with y01 and y10 requires canceling the dependence on p00, as in Im[y01y∗10]

y01y†
10 = (y01y†

10)
∗→ Im[y01y∗10] = 0 , (2.29)

where yi j are complex numbers (y†
i j = y∗i j). The CPI vanishing is necessary (but often not sufficient)

for CP conservation, and in this case constrains the relative phase between the couplings.
I generalise the field content to include all 9 ∆(27) singlets hi j. Imposing a Z3 symmetry

where each hi j transforms equally can reduce the allowed terms. There are 9 Yukawa-like terms
like z00h00h00h00 (one for each singlet) but I focus on the mixed terms like y1h00h01h02, of which
there are 12 combinations [3]:

LIX = y1h00h01h02 + y2h00h10h20 + y3h00h11h22 + y4h00h12h21+

y5h01h10h22 + y6h01h11h21 + y7h01h12h20+

y8h02h10h21 + y9h02h11h20 + y10h02h12h22+

y11h10h11h12 + y12h20h21h22+H.c. . (2.30)

The CP conservation condition for each coupling depends on the 3 phases of the respective singlets:

y1ei(p00+p01+p02) = y∗1 , y2ei(p00+p10+p20) = y∗2 , y6ei(p01+p11+p21) = y∗6 , (2.31)

y10ei(p02+p12+p22) = y∗10 , y11ei(p10+p11+p12) = y∗11 , y12ei(p20+p21+p22) = y∗12 . (2.32)

It is possible to combine several of the mixed couplings to form a CPI. An example is

Im[y1y∗2y∗6y∗10y11y12] , (2.33)

so this particular combination of couplings has to be real for CP to be conserved. Other combina-
tions can be built from the couplings in LIX .

2.2.3 ∆(27) pair of triplets

The next case study for the IA are Yukawa-like terms with 2 ∆(27) triplets (the case with 1
∆(27) triplet can be found in [2, 3]). An interesting Lagrangian is similar to LCD:

L3s = y00(Lν
c)00h00 + y01(Lν

c)02h01 + y10(Lν
c)20h10 +H.c. , (2.34)

where there are now 3 singlets, and L, νc are the triplet and anti-triplet respectively. The general
CP transformations are associated with unitary transformations:

h00→ eip00h∗00; h01→ eip01h∗01; h10→ eip10h∗10; (2.35)

L→UT
L L∗; ν

c→Uνν
c∗ . (2.36)
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Identifying the Yukawa matrices associated with each hi j as Yi j, CP invariance requires

ULYi jUνeipi j = Y ∗i j . (2.37)

The relevant CPI is [1]:

I3s ≡ ImTr(Y00Y †
01Y10Y †

00Y01Y †
10) . (2.38)

Note that this invariant applies to the Lagrangian even in the absence of ∆(27). However, ∆(27)
invariance imposes additionally Y00 = y00I (proportional to the identity matrix) and

Y01 = y01

0 1 0
0 0 1
1 0 0

 ; Y10 = y10

1 0 0
0 ω 0
0 0 ω2

 . (2.39)

If one calculates the CPI for the ∆(27) invariant Lagrangian one obtains:

I3s = Im(3ω
2|y00|2|y01|2|y10|2) , (2.40)

where the only phase present is ω2. The IA reveals a case of geometrical CP violation, i.e. where
CP is violated but the arbitrary phases of the couplings (in this case the yi j) are irrelevant.

Note that this type of invariant can only be built with 3 or more Yukawa matrices, which is a
hint that cases with 2 singlets automatically conserve CP - as is the case for LCD and is shown in
[2]. In fact there is explicit geometrical CP violation for Lagrangians of type L3s with almost any
combination of 3 ∆(27) singlets [2] - the exceptions are when choosing one of the 12 combinations
of 3 singlets that make up an invariant term in LIX , in such cases the Lagrangian conserves CP
automatically. One such example is:

L3s1 = y00(Lν
c)00h00 + y01(Lν

c)02h01 + y02(Lν
c)01h02 +H.c. , (2.41)

associating with each hi j as Yi j and using the matrices imposed by ∆(27) invariance:

I3s1 ≡ ImTr(Y00Y †
01Y02Y †

00Y01Y †
02) = 0 . (2.42)

The CP symmetries present in these 12 special cases are discussed in [2].
Any choice of 4 or more singlets includes combinations of 3 that allow CP violation. By

adding any other singlet to the set h00, h01, h02 in L3s1 , we have a singlet hi j with i 6= 0. In general
there is no vanishing of the I3s-type CPIs involving Yi j with Y00, Y01, Y02:

ImTr(Y00Y †
01Yi jY

†
00Y01Y †

i j) , (2.43)

ImTr(Y01Y †
02Yi jY

†
01Y02Y †

i j) , (2.44)

ImTr(Y02Y †
00Yi jY

†
02Y00Y †

i j) . (2.45)
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2.2.4 ∆(27) three triplets and beyond

The next step is to investigate Yukawa-like Lagrangians in the presence of 3 ∆(27) triplets.
Considering Higgs doublets hu ∼ 110 and hd ∼ 101 (the notation is slightly different from the nota-
tion in other sections), and a Z2 symmetry that ensures uc couple only to hu and dc couple only to
hd , the Lagrangian is:

L2HDM = yu(Quc)20hu + yd(Qdc)02hd +H.c. , (2.46)

where Q is a triplet and dc, uc are anti-triplets of ∆(27). Again I take Yukawa matrices Yu, Yd

corresponding to the terms and apply the IA. The general CP transformations are denoted as

hu→ eipuh∗u , hd → eipd h∗d , (2.47)

Q→UT
Q Q∗ , uc→Uuuc∗ , dc→Uddc∗ . (2.48)

CP invariance demands, similarly to the SM case [6]:

UQYuUueipu = Y ∗u , (2.49)

UQYdUdeipd = Y ∗d . (2.50)

so I use the Hermitian combinations Hu,d ≡ Yu,dY †
u,d

UQHuU†
Q = H∗u , UQHdU†

Q = H∗d , (2.51)

concluding Tr [Hu,Hd ]
3 = 0 [6] is necessary and sufficient for CP conservation. As ∆(27) imposes

Yu = yu

1 0 0
0 ω2 0
0 0 ω

 , (2.52)

Yd = yd

0 1 0
0 0 1
1 0 0

 , (2.53)

CP is automatically conserved for any yu, yd . In order to enable CP violation through an I3s-type
CPIs not vanishing requires at least 3 singlets coupling to one of the sectors, meaning that it is now
possibly to have up to 6 distinct singlets and automatically conserve CP.

Beyond 3 triplets, more and more singlets can be included while the Lagrangian automatically
conserves CP. The final generalisation I consider is to add another anti-triplet xc. If the sectors are
separated by an Abelian symmetry (like the Z2 discussed for L2HDM), there are 3 sectors of ∆(27)
singlets that I denote hdi j , hukl , hxmn . Using the IA and considering how CPIs can be constructed we
extend the previous results to conclude that the relevant CPIs are of I3s-type for each sector (due to
the different Ud , Uu, Ux matrices):

L4Q = Ydi j(Qdc)hdi j +Yukl (Quc)hukl +Yxmn(Qxc)hxmn +H.c. , (2.54)

Q→UT
Q Q∗ , dc→Uddc∗ , uc→Uuuc∗ , xc→Uxxc∗ . (2.55)

It is interesting that at 4 triplets (in this case 1 triplet and 3 anti-triplets) we have reached a
situation where CP can be automatically conserved even with fields transforming as each of the 9
∆(27) singlets. One example is hd00 , hd01 , hd02 , hu10 , hu11 , hu12 , hx20 , hx21 , hx22 [3].
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3. Conclusions

The invariant approach is very useful with family symmetries, and the examples I described
serve to demonstrate this. One of the advantages of the method is that it does not depend on the
group when the CP-odd invariants are constructed. ∆(27) as a family symmetry has rich interplay
with CP, which was also revealed through the examples that were explored.

I showed several Lagrangians, from cases with only 1-dimensional representations of ∆(27)
(singlets), to Yukawa-like terms involving ∆(27) triplet and anti-triplet, and progressing to three
and more ∆(27) triplets.

The number and type of representations fundamentally affects the CP properties of the La-
grangian. For those with only singlets, the invariant approach reveals the relevant physical phases,
which turn out to be relative phases of the complex couplings. For the two triplet case (with one
sector), CP is automatically conserved for Yukawa-like terms involving any 2 ∆(27) singlets and
for 12 special combinations out the total 84 combinations of 3 singlets (the other cases are exam-
ples of explicit geometrical CP violation). The same type of conclusion holds independently for
each sector, and therefore with 3 sectors it is even possible to have all 9 ∆(27) singlets present
while automatically conserving CP.
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