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We discuss the construction of heterotic–string models that allow for the existence of an extra
Z′ at low scales. One of the main difficulties encountered is that the desired symmetries tend to
be anomalous in the prevailing three generation constructions. The reason is that these models
utilise the symmetry breaking pattern E6→ SO(10)×U(1)ζ by GGSO projections. Consequently,
U(1)ζ becomes anomalous. The spinor–vector duality that was observed in the fermionic Z2×Z2

orbifold compactifications is used to construct a phenomenological three generation Pati–Salam
heterotic–string model in which U(1)ζ is anomaly free and therefore can be a component of a
low scale Z′. The model implies existence of matter states at the Z′ breaking scale, which are
required for anomaly cancelation. Moreover, the string model gives rise to exotic states, which
are SO(10) singlets but carry exotic U(1)ζ charges. These states arise due to the breaking of E6

by discrete Wilson lines and provide natural dark matter candidates. Initial indications suggest
that the existence of additional gauge symmetries at the TeV scale may be confirmed in run II of
the LHC experiment.
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1. Introduction

The Standard Model of elementary particle physics continues to provide an accurate parame-
terisation of all particle physics observations. The data from the lepton colliders during the 1990s
confirmed the non–Abelian nature of the electroweak and strong interactions to an unprecedented
precision. The observation of a Higgs–like state at the LHC represents another triumph of the
model. The task of future experiments will be to continue to probe the Standard Model parameter-
isation to better and better precision, and possibly discover its plausible extensions. It is also not
implausible that the Standard Model is all there is at the energy scales within reach of the LHC and
possibly within reach of collider experiments in the decades to come. This does not diminish from
the vitality of these experiments and their importance. If nature consists solely of the Standard
Model in this energy range we ought to confirm that this is the indeed the case in future exper-
iments. The challenge to develop the instruments that can probe nature at the increasing energy
scales benefits the societies that pursue this endeavour and ultimately offers them technological
and economic supremacy. At the present state of affairs the standard model consists of three gauge
sectors, three generations of matter families with six chiral multiplets per family1, and a single
electroweak scalar doublet. Perhaps the most striking feature of the Standard Model is the fact that
its matter content fits into chiral 16 representations of SO(10). The significance of this coincidence
is exemplified most clearly if we consider that the Standard Model gauge quantum numbers are
experimental observables. The Standard Model requires fifty–four parameters to account for these
charges, whereas its embedding in SO(10) reduces this number to one parameter, being the number
of SO(10) chiral 16 representations required to embed the Standard Model states. The success of
the Standard Model provide strong support for the realisation of the SO(10) unification structures
in nature. The scale where these unification structures become relevant is, however, far removed
from the electroweak scale. Evidence to this effect stem from the observed logarithmic running of
the Standard Model parameters; the proton longevity; and the suppression of left–handed neutrino
masses.

Despite its enormous success, the Standard Model leaves several gaps. While QCD provides
an accurate parameterisation of the strong interactions in the perturbative regime, a detailed un-
derstanding of its nonperturbative infrared limit and confinement is still lacking. The gravitational
effects are not accounted for. Moreover, there is a fundamental dichotomy between point quantum
field theories, the calculational framework underlying the Standard Model, and general relativity,
which underlie the gravitational interactions. String theories produce a self–consistent approach
to the synthesis of general relativity and quantum mechanics. Furthermore, the string consistency
conditions mandate the existence of gauge and matter states, similar to those that are present in the
Standard Model. String theories therefore facilitate the development of a viable phenomenological
approach to probe how the gravitational and gauge interactions may be reconciled.

Heterotic string theory is particularly appealing because it gives rise to spinorial representa-
tions in its perturbative spectrum, and thus enables the embedding of the Standard Model matter
states in spinorial SO(10) representations. The free fermionic formulation [1] of the heterotic string
provides a particularly fertile framework for the construction of phenomenological string vacua
with SO(10) embedding of the Standard Model chiral states. It is important to note that the SO(10)

1including a right–handed neutrino, which is instrumental for the observed neutrino data
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symmetry is broken to one of its subgroups directly at the string scale. This gives rise to the string
doublet–triplet splitting mechanism. It enables the Higgs states to exist in incomplete SO(10) mul-
tiplets, which facilitates the compatibility with the gauge coupling data at the electroweak scale, as
well as with proton lifetime limits. The primary guides in the search of quasi–realistic string vacua
are the existence of three chiral generations and their SO(10) embedding.

2. Free fermionic models

A class of phenomenological string vacua that meet these criteria are the quasi–realistic string
models in the free fermionic formulation. Since the early 1990s this class of models provided
a laboratory to study how the phenomenological features of the Standard Model may arise from
string theory. A few of the highlights include:

• Minimal Superstring Standard Model [2, 3]. Construction of string models leading to solely
the MSSM spectrum below the string scale.

• Top quark mass → 175− 180GeV [4]. Calculation of the top and bottom quarks Yukawa
couplings at the string scale yielding a prediction of the top quark mass at the electroweak
scale.

• Fermion masses and CKM mixing [5].

• Stringy seesaw mechanism and neutrino masses [6].

• Gauge coupling unification [7].

• Proton stability [8]

• Squark degeneracy [9].

• Moduli fixing [10].

• Classification & Exophobia [11, 12, 13].

• Spinor–vector duality [14, 15].

It should be stressed that this free fermionic construction probes one class heterotic–string vacua,
which are related to Z2×Z2 orbifold compactification. Other classes of string vacua can be probed
by using a variety of tools that have been developed over the years. These include geometrical, orb-
ifolds, interacting world–sheet conformal field theory constructions; orientifolds. A comprehensive
review of different approaches to string phenomenology is given in ref. [16].

3. Z′s in free fermionic models

One of the well motivated extensions of the Standard Model is the existence of an extra gauge
symmetry beyond the Standard Model. The first argument in favour of such extensions is that
gauge symmetries actually exist in nature, and the assumption that an additional gauge symmetry
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exists is not outrageous. More concretely, we have argued that the Standard Model gauge charges
strongly hint to the SO(10) embedding of the Standard Model matter states. This necessitates that
the Standard Model gauge symmetry is extended by at least one U(1) factor. The promotion of
the global baryon and lepton symmetries to a local symmetry further hints that the Standard Model
gauge symmetry should be extended. This again fits well with the SO(10) paradigm in which
the baryon minus lepton number is gauged. Anomaly cancellation in perturbative string theory,
which incorporates the Standard Model building blocks and gravity in one embrace, mandates the
existence of additional gauge symmetries. Furthermore, the heterotic–string fuses those ingredients
and reproduces the SO(10) structure underlying the Standard Model. It should be emphasised again
that the SO(10) symmetry is not manifested as a gauge symmetry in the effective field theory limit
of the string vacua, but merely serves as an organisional framework from that point of view. It’s
ultimate role, once the full string dynamics is better understood is a story for the future. Possibly
for future generations.

The Standard Model points to the existence of additional gauge symmetries, while string the-
ory mandates their existence. Alas, the additional gauge symmetries may be broken at a high scale
compared to the electroweak scale and would not be observed in contemporary collider experi-
ments. Non–Abelian extensions of the Standard Model like SU(5) is consistent with proton decay
limits only if the SU(5) symmetry is broken above 1016GeV . The most plausible extension of the
Standard Model within reach of contemporary collider experiments is an Abelian gauge symmetry.

The heterotic–string models in the free fermionic formulation reproduce the general features
of the Standard Model and provide a setting to investigate additional gauge symmetries in quasi–
realistic string constructions. While additional spacetime vector bosons are abundant in the string
models, the possibility that they remain massless to low energy scales is far less obvious. In fact for
a variety of reasons most of the additional gauge symmetries have to be broken at a scale beyond
the reach of the LHC. Exploration of additional Z′s in free fermionic models started in the early
nineties. The first case to be considered [17] was the combination

U(1)Z′ =
3
2

U(1)B−L−2U(1)R ∈ SO(10). (3.1)

Existence of this Z′ at the TeV scale ensures the suppression of proton decay from dimension four
operators, which are endemic in supersymmetric extensions of the Standard Model. However, the
underlying SO(10) symmetry in the string models dictates that the Dirac mass term of the tau
neutrino is equal that of the top quark. Breaking the U(1)Z′ symmetry of eq. (3.1) at the TeV
scale generates a low scale seesaw, which implies either a relatively heavy tau neutrino or that
some scalar fields get an ad hoc VEV of order O(1keV ) [6]. A more natural possibility is that
this U(1)Z′ symmetry is broken at a high scale, which generates a large scale seesaw and naturally
produces light neutrino masses [6]. However, high scale breaking of the U(1)Z′ symmetry of eq.
(3.1) would naively generate effective dimension four proton decay mediating operators via the
nonrenormalisable terms

QLdN φ
n uddN φ

n (3.2)

where N and ¯N are the components of the Higgs fields that break U(1)Z′ , and φ n is a string of
states that get VEVs of the order of the string scale. The induced dimension four operators are
proportional to the U(1)Z′ symmetry breaking scale, and in the absence of additional suppression
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generate proton decay at an unacceptable rate. It is noted that in heterotic string models the prob-
lems of proton stability and light neutrino masses are in conflict. Namely, the first prefers a low
U(1)Z′ breaking scale, whereas the second works better with a high U(1)Z′ breaking scale. Another
possibility is the existence of alternative gauge symmetries in the string vacua, which suppress the
proton decay mediating operators but allow a high breaking of U(1)Z′ and therefore a high seesaw
mass scale. Such gauge symmetries within reach of the LHC should additionally: 1. be anomaly
free; 2. be family universal; 3. allow for quark and lepton mass terms. Pati proposed in ref. [18]
that the family universal anomaly free combination of the flavour U(1)s in the model of ref. [19]
plays a role in adequately suppressing proton decay mediating operators, as well as allowing for
suppression of left–handed neutrino masses via the seesaw mechanism. In ref. [20] it was shown
that the U(1) symmetry discussed in ref. [18] must be broken near the string scale. Other U(1)
symmetries that may play a role in suppressing proton decay mediating operators while allowing
for a high seesaw mass scale were discussed in refs. [21]. To understand the properties of these
extra U(1) symmetries, and why they fail to materialise as low scale Z′s, it is instrumental to first
consider the general structure of the free fermionic models.

4. Free fermionic constructions

In the free fermionic construction all the degrees of freedom needed to cancel the world–sheet
conformal anomaly are represented in terms of Majorana–Weyl free fermions. It is important to em-
phasise that the fermions are free only at a specific point in the moduli space and moving away from
that point entails adding world–sheet Thirring interactions [22], which preserve the conformal sym-
metry. The constructions are mathematically equivalent to bosonic compactifications on six dimen-
sional tori, with the world–sheet Thirring interactions being equivalent to the exact marginal defor-
mations in the bosonic models. In four dimensional models in the light–cone gauge the total num-
ber of world–sheet fermions is twenty left–moving and forty–four right–moving real two dimen-
sional fermions. Eight of the left–moving fermions correspond to the Ramond–Neveu–Schwarz
fermions in the supersymmetric side of the ten dimensional heterotic–string, whereas the additional
twelve correspond to the six left–moving compactified coordinates. Similarly, on the right–moving
side twelve real fermions correspond to the six compactified dimensions. The remaining thirty–
two fermions are combined into sixteen complex fermions that give rise to the rank sixteen gauge
symmetry of the heterotic–string in ten dimensions. The sixty–four world–sheet fermions are typi-
cally denoted by {ψ1,2,(χ,y,ω)1,···,6|(ȳ, ω̄)1,···,6, ψ̄1,···,5, η̄1,2,3, φ̄ 1,···,8}, where ψ̄1,···,5 are the Cartan
generators of the SO(10) GUT group.

Under parallel transport around the non–contractible loops of the torus representing the vac-
uum to vacuum amplitude, the world–sheet fermions pick up a phase. These transformation prop-
erties are summarised in sixty–four dimensional vectors. Invariance of the vacuum to vacuum
amplitude under modular transformations leads to a set of constraints on the phase assignments.
Summation over all the possible assignments with appropriate phases to render a sum which is
modular invariant produces the partition function. Models in the free fermionic construction are
therefore obtained by specifying a set of boundary condition basis vectors and the one–loop sum-
mation phases in the partition function. The resulting string vacuum may be equivalently specified
as an orbifold of a six dimensional internal torus, and corresponds to compactification on some
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Calabi-Yau manifold in the smooth effective field theory limit. The moduli deformations of the six
dimensional internal manifold are represented in the fermionic construction in terms of world–sheet
Thirring interactions. The massless spectrum and interactions are obtained in the free fermionic
formalism by applying the Generalised GSO projections and can be extracted in relative ease.

The early free fermionic heterotic–string models were constructed by specifying a set of eight
(or nine) basis vectors. The first five basis vectors consist of the so–called NAHE–set [23], and are
common in all the early phenomenological models. The gauge group at the level of the NAHE–set
is SO(10)×SO(6)3×E8, with forty–eight multiplets in the spinorial 16 representation of SO(10).
The SO(10) symmetry is broken to one of its subgroups and the numbers of generations is reduced
to three by adding three or four basis vectors to the NAHE–set. The phenomenological properties
of the models are then extracted by calculating trilevel and higher order terms in the superpotential
and by analysing its flat directions.

5. Toward string predictions

The phenomenological three generation models may also lead to signatures beyond the Stan-
dard Model, that may be tested in future experiments. It is important to note that the actual cor-
relation of these effects with experimental data will necessarily employ an effective field theory
parameterisation. Among the possibilities we may list: specific patterns of supersymmetry break-
ing, which may be seen in forthcoming collider experiments; additional spacetime gauge bosons
that similarly lead to specific collider signatures; and the existence of exotic matter that produces a
variety of dark matter candidates. Recently the ATLAS and CMS experiments at the LHC reported
possible excesses that are compatible with the existence of additional vector bosons of order 2TeV
[24]. A comprehensive analysis of possible extra vector bosons in string models was undertaken in
ref. [25].

However, the construction of string models that allow the existence of an extra Z′, of the type
that may be observed by the LHC experiments at the TeV scale, is highly non–trivial. To see why
this is the case we have to examine the patterns of SO(10) symmetry breaking induced by the basis
vectors beyond the NAHE–set. The SO(10) symmetry is broken to the following subgroups by the
assignment of boundary conditions b(ψ̄1···5

1
2

):

1. b{ψ̄1···5
1
2

η̄
1

η̄
2

η̄
3} = {1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2
}⇒ SU(5)×U(1) ×U(1)×U(1)×U(1) (5.1)

2. b{ψ̄1···5
1
2

η̄
1

η̄
2

η̄
3} = { 1 1 1 0 0 000 }⇒ SO(6)×SO(4)×U(1)×U(1)×U(1). (5.2)

The breaking SO(10) → SU(3)C×SU(2)L×U(1)C×U(1)L is obtained by combining (5.1) and
(5.2) in two separate basis vectors. The Left–Right Symmetric (LRS) breaking pattern SO(10)→
SU(3)C× SU(2)L× SU(2)R×U(1)B−L may be obtained by including two SO(10) breaking basis
vectors with the first inducing the Pati–Salam breaking pattern in eq. (5.2) and the second

3. b{ψ̄1···5
1
2

η̄
1

η̄
2

η̄
3} = {1

2
1
2

1
2

0 0
1
2

1
2

1
2
}⇒ (5.3)

SU(3)C×U(1)C×SU(2)L×SU(2)R×U(1)×U(1)×U(1)
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A key difference between the SU(5)×U(1), SO(6)× SO(4) and SU(3)× SU(2)×U(1)2 cases,
which are obtained by using the boundary condition assignments in eqs. (5.1) and (5.2), versus the
LRS models is with respect to the charges of the Standard Model family states under the three U(1)
symmetries, U(1)1,2,3, corresponding to the world–sheet complex fermions η̄1,2,3. In the first class
of models QU(1) j(16 = {Q,L,U,D,E,N}) = + 1

2 , i.e. all the states in the 16 SO(10) spinorial
representation in a given twisted plane have common charge ±1/2. Therefore, in these models
U(1)1,2,3, as well as the the family universal combination U(1)ζ = U(1)1 +U(1)2 +U(1)3, are
anomalous. In the LRS models on the other hand, the charges differ between the left– and right–
handed states, with

QU(1) j( QL , LL ) = − 1
2
, (5.4)

QU(1) j( QR = {U,D} , LR = {E,N} ) = +
1
2
. (5.5)

Consequently, in these models the U(1)1,2,3 symmetries as well as the family universal combina-
tion U(1)ζ are anomaly free. Three generation left–right symmetric string derived models were
presented in ref. [26]. Some of the models presented contain untwisted Higgs bi–doublets that
can be used to generate quasi–realistic fermion mass spectrum from renormalisable and non–
renormalisable superpotential terms.

For a U(1) symmetry to remain unbroken down to low scales it must be anomaly free. To be
viable at scales within reach of the LHC it must also be family universal. The family universal
combination U(1)ζ satisfies the two requirements. To study its signatures at low scales we build
a string inspired model [27] with the charge assignments in eqs. (5.4, 5.5). Considering only the
Standard Model matter states leads to a mixed SU(2)2

L×U(1)ζ anomaly. The string derived models
are anomaly free and contain extra states that cancel the anomaly. To construct a model free of all
anomalies SU(2)L/R doublets are added to the model. To facilitate gauge coupling unification we
may also add colour triplets. We impose that the charge assignments in the string inspired model
are compatible with the charges in the string derived models. Extrapolating the gauge coupling
from the GUT unification scale to the electroweak scale and imposing the experimental values
αS(MZ)≈ 0.1 and sin2

θ(MZ)≈ 0.231 yields the following hierarchy of scales [27]

MSUSY ≈ 1TeV; MZ′ > 108GeV; MD > 1012GeV; MR ≈Mstring,

where MR is the symmetry breaking scale of SU(2)R, which induces the seesaw mechanism and
the suppression of left–handed neutrino masses. It is noted that compatibility of string gauge
coupling unification with the gauge coupling parameters at the electroweak scale requires that MZ′

is heavier than 108GeV. Hence, a Z′ at the TeV scale in this string inspired model is incompatible
with the gauge coupling data. The root of the discrepancy can be seen to arise from the fact that the
Z′ charges do not admit the E6 embedding in this model. The contrast between this model versus
models that admit the E6 embedding can be seen by examining the contributions of the intermediate
gauge and matter thresholds to sin2

θW (MZ) and α3(MZ). In the case of the charge assignments in
the LRS string inspired model the threshold corrections from intermediate gauge and matter scales
are given by

δ
(
sin2

θW (MZ)
)

I.T.
=

1
2π

k1α

1+ k1

(
12
5

log
MS

MR
− 24

5
log

MS

MZ′
− 2nD

5
log

MS

MD

)
,
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δ (α3(MZ))I.T. =
1

2π

(
3
2

log
MS

MR
−9log

MS

MZ′
+

3nD

4
log

MS

MD

)
, (5.6)

whereas in the case of models that admit the E6 embedding the threshold corrections are given by

δ
(
sin2

θW (MZ)
)

I.T.
=

1
2π

k1α

1+ k1

(
12
5

log
MS

MR
+

6
5

log
MS

MH
− 6

5
log

MS

MD

)
,

δ (α3(MZ))I.T. =
1

2π

(
3
2

log
MS

MR
− 9

4
log

MS

MH
+

9
4

log
MS

MD

)
. (5.7)

Eqs. (5.6) and (5.7) demonstrate the cancellation between thresholds corrections of the doublets
and triplets in the models that admit the E6 embedding, which is not the case in the string inspired
LRS models, as seen from eq. (5.6). Compatibility of heterotic–string gauge coupling unification
with the gauge coupling data at the electroweak scale therefore favours string models that admit
the E6 embedding of the U(1)ζ charges. As discussed above in many of the string derived models,
including the flipped SU(5) [28], the Pati–Salam [29] and the standard–like models [19], U(1)ζ is
anomalous, which results from the symmetry breaking pattern E6→ SO(10)×U(1)ζ , induced by
a GGSO projection at the string scale. Construction of models with U(1)ζ charges that admit an
E6 embedding and in which U(1)ζ is anomaly free can be pursued in two directions. The first is
to construct string models in which the symmetry breaking pattern E6 → SO(10)×U(1)ζ is not
present. To understand how this is achieved it is instrumental to examine how the gauge symmetry
is generated in the free fermionic models. Observable space–time vector bosons in the relevant
models are obtained from two sectors. The first is the untwisted Neveu–Schwarz–sector (NS–
sector) that produces vector bosons in the adjoint representation of SO(2n) groups, with n ≤ 8.
The second is the x–sector [5] that produces states in the spinorial representation of SO(2n). In the
case of the E6 symmetry, the NS–sector produces the vector bosons in the adjoint representation
of SO(10)×U(1), whereas the x–sector produces vector bosons in the 16+1⊕16−1 representation
of the SO(10)×U(1) gauge group. The breaking in the string models of E6 to SO(10)×U(1)ζ

is obtained by projecting the 16+1⊕ 16−1 spinorial states from the x–sector. Maintaining the E6

embedding of the U(1)ζ charges, while keeping as an anomaly free symmetry can therefore be
obtained by keeping the states from the x–sector in the massless spectrum, and inducing alternative
E6 symmetry breaking patterns. An example of models in this class includes the SU(6)× SU(2)
heterotic–string derived models of ref. [31]. The caveat is that, given the available Standard Model
singlets in the spectrum of the heterotic–string model, it is not possible to break the SU(6)×SU(2)
to SU(3)C×SU(2)L×U(1)Y ×U(1)Z′ , i.e. the extra Z′ is necessarily broken at a high scale by the
VEVs of the Standard Model singlets. The available Standard Model singlets are the SO(10) singlet
from the 27 representation of E6 and the second is the Standard Model singlet in the spinorial
16 representation of SO(10). A VEV for either of these fields leaves an unbroken non–Abelian
extension of the Standard Model, and reduction to the non–Abelian content of the Standard Model
uses both VEVs. Construction of string models with SU(4)× SU(2)L × SU(2)R ×U(1)ζ ′ and
SU(3)×SU(2)L×U(1)Y ×U(1)Z′ was discussed in [27] and [32], respectively. In both cases the
NS–sector generates a subgroup of the gauge symmetry, which is enhanced by states from the x–
sector. Both cases would allow for an extra Z′ at low scales. However, concrete three generation
string models that realise this construction were not presented in [27, 32].
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6. Spinor–vector duality

An alternative method to build string models with anomaly free U(1)ζ is to utilise the spinor–
vector duality discovered in the classification of SO(10) heterotic–string models [11]. The spinor–
vector duality is a symmetry in the space of heterotic–string vacua under the exchange of the total
number of 16⊕16 spinorial and anti–spinorial representations of SO(10), with the total number of
vectorial 10 representations [14]. The statement is that for a given vacuum with a #1 of 16⊕ 16
representations, and a #2 of vectorial 10 representations, there exist another vacuum in which
the two are interchanged. The duality operates in the space of Z2×Z2 heterotic–string in which
the (2,2) world–sheet supersymmetry is broken to (2,0). In fact, it is possible to understand
the origin of the duality from its origin in the (2,2) vacua. In those cases the SO(10)×U(1)
symmetry is enhanced to E6. The 27 representation of E6 decomposes under SO(10)×U(1) as
27 = 161/2 + 10−1 + 1+2, whereas the 27 decomposes as 27 = 16−1/2 + 10+1 + 1−2. Thus, in the
case of vacua with (2,2) world–sheet supersymmetry the total number of 16⊕ 16 representations
is equal to the total number of 10 representations, i.e. #1=#2. This case therefore corresponds
to the enhanced symmetry, self–dual point under the spinor–vector exchange. This is similar to
the case of T –duality [33] where the symmetry at the self–dual point is enhanced from U(1)2 to
SU(2)2. At the level of the (2,2) there exist a spectral flow operator, on the bosonic side of the
heterotic–string, that exchanges between the components of the SO(10)×U(1) representations
inside the 27 representation of E6. This spectral flow operator is a generator of the world–sheet
N = 2 supersymmetry on the bosonic side of the heterotic–string. It is similar to the spectral flow
operator on the fermionic side, which acts as the space–time supersymmetry generator. When the
world–sheet supersymmetry is broken on the bosonic side of the heterotic–string by a Wilson line
the E6 symmetry is broken to SO(10)×U(1). One has a choice of using a Wilson line that leaves
a #1 of massless 16⊕ 16 representations, and a #2 of vectorial 10 representations, or a choice of
a second Wilson line, which exchanges the two numbers [15]. The map between the two Wilson
lines, or between the two resulting string vacua, is induced by the spectral flow operator on the
bosonic side of the heterotic–string. Hence, the spinor–vector duality results from the breaking
of the (2,2) world–sheet supersymmetry to (2,0) and is induced by the spectral flow operator on
the bosonic side of the heterotic–string [15]. The spinor–vector duality is a remarkable property
in the space of Z2 and Z2×Z2 heterotic–string vacua, akin to mirror symmetry [34]. It indicates a
global structure underlying the entire space of solutions, and may be a manifestation of a deeper
mathematical structure underlying these compactifications. The picture may be extended to string
theories with interacting world–sheet CFTs, e.g. to Gepner models [35], albeit with slightly more
intricate relations [36].

As noted above the self–dual vacua under the spinor–vector duality map are those in which
the total number of 16⊕ 16 is equal to the total number of 10 representations. This self–duality
property is realised when the gauge symmetry is enhanced to E6. In this case U(1)ζ is anomaly free
by virtue of its embedding in E6. However, there is a class of self–dual vacua with equal number
of 16⊕ 16 and 10 representations in which the symmetry is not enhanced to E6. This is possible
if the 16 and 10 components are obtained at different fixed points of the Z2× Z2 orbifold. That
is, obtaining a spinorial 16 multiplet and a vectorial 10 multiplet at the same fixed point would
necessarily imply enhancement of the gauge symmetry to E6. However, if they are obtained at
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different fixed points we may have models in which their number is equal, i.e. which are self–
dual with respect to the spinor–vector duality, but in which the gauge symmetry is not enhanced to
E6. In such vacua U(1)ζ may be anomaly free because the chiral spectrum comes in complete E6

multiplets. However, the E6 is not manifested in the low energy effective field theory.
The spinor–vector duality was initially found “empirically” by the classification of free fermionic

models with SO(10) GUT symmetry, and proven in terms of the GGSO projection coefficients. It
was further demonstrated in terms of discrete torsions of the Z2

2 and Z3
2 orbifolds, and as a map

between two Wilson lines, induced by the spectral flow operator, as discussed above.
In a model that may give rise to a low scale Z′ the SO(10) symmetry is necessarily broken.

However, we may seek models that preserve the self–duality property at the SO(10) level. In such
models the chiral spectrum will reside in complete E6 multiplets, decomposed under the effective
unbroken gauge symmetry. In such models U(1)ζ may be anomaly free and be a component
of a low scale Z′. To “troll” a model with these features we use the classification methodology
developed in ref. [11, 12, 13], which is outlined in the next section.

7. The classification methodology

The early three generation models in the free fermionic formulation [28, 19, 29] consisted of
isolated examples, and were obtained, in a sense, by a straw of good fortune. A more systematic
approach was developed over the past two decades, which entails the scanning of large spaces
of fermionic Z2 × Z2 orbifold compactifications, of the order of 1015 vacua. The method was
developed in [37] for the classification of type IIB superstrings and extended in [11, 12, 13] for the
classification of heterotic string vacua with various subgroups of an SO(10) GUT group. In this
method the set of boundary condition basis vectors is fixed and the enumeration of the models is
obtained by varying the Generalised GSO (GGSO) phases. The set of basis vectors used is given
by a set of thirteen basis vectors B = {v1,v2, . . . ,v13}. The first twelve basis vectors are shown in
eq. (7.1),

v1 = 1 = {ψµ , χ
1,...,6,y1,...,6,ω1,...,6|

ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄ 1,...,8},
v2 = S = {ψµ ,χ1,...,6},

v2+i = ei = {yi,ω i|ȳi, ω̄ i}, i = 1, . . . ,6,

v9 = z1 = {φ̄ 1,...,4}, (7.1)

v10 = z2 = {φ̄ 5,...,8},
v11 = b1 = {χ34,χ56,y34,y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5},
v12 = b2 = {χ12,χ56,y12,y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5},

where the fermions appearing in the curly brackets in eq. (7.1) are periodic, whereas those that do
not appear are antiperiodic. The set of twelve basis vectors appearing in (7.1) is identical to the set
used to generate the SO(10) models. The first ten basis vectors {1,S,z1,z2,ei}, with i = 1, . . . ,6,
generate vacua that preserve N = 4 space–time supersymmetry. The subsequent two basis vectors,
b1 and b2, correspond to the Z2×Z2 orbifold twistings and break N = 4 space–time supersymmetry
to N = 2 and N = 1.

10
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The thirteenth vector in our basis breaks the SO(10) symmetry to a subgroup. The vector given
by

v13 = α = {ψ̄4,5, φ̄ 1,2}, (7.2)

is used to generate the Pati–Salam subgroup [12], whereas the basis vector

v13 = β = {ψ1,...,5 = 1
2 ,η

1,2,3 = 1
2 ,φ

1,2
= 1

2 ,φ
3,4

= 1
2 ,φ

5
= 1,φ 6,7

= 0,φ 8
= 0}, (7.3)

is used in the case of the flipped SU(5) models [13]. We note that the models contain many sectors
that may enhance the four dimensional gauge group. In the model that we seek to obtain here
we impose that all the additional space–time vector bosons that arise in these additional sectors
are projected out from the massless spectrum. The self–dual model that we seek to present here
is obtained by using the basis vector in eq. (7.2). Hence, the SO(10) symmetry in this model is
broken to the Pati–Salam subgroup. The one–loop GGSO phases in the partition function are given
by a 13×13 matrix

c
[

vi

v j

]
=



1 S e1 e2 e3 e4 e5 e6 z1 z2 b1 b2 α

1 −1 −1 ± ± ± ± ± ± ± ± ± ± ±
S −1 −1 −1 −1 −1 −1 −1 −1 1 1 −1
e1 ± ± ± ± ± ± ± ± ± ±
e2 ± ± ± ± ± ± ± ± ±
e3 ± ± ± ± ± ± ± ±
e4 ± ± ± ± ± ± ±
e5 ± ± ± ± ± ±
e6 ± ± ± ± ±
z1 ± ± ± ±
z2 ± ± ±
b1 ± ±
b2 −1 ±
α



,

where only the entries above the diagonal are independent, whereas those on and below the diagonal
are determined by modular invariance. The entries in the second row are fixed by requiring that
the models preserve N = 1 space–time supersymmetry, and the phase c

[b1
b2

]
only affects the overall

chirality, and is therefore fixed. This leaves a priori a space of 266 vacua. Below we introduce the
notation

c
[

vi
v j

]
= exp[iπ(vi|v j)],

which is instrumental for the analysis.
The classification methodology facilitates systematic extraction of the entire twisted massless

spectrum. The untwisted spectrum is common in all the models by demanding that all enhanced
symmetries are projected out. Focusing on the Pati–Salam class of models, the observable gauge
symmetry is then SO(6)×SO(4)×U(1)3. The chiral generations, for example, then arise from the
twisted sectors

B(1)
pqrs = S+b1 + pe3 +qe4 + re5 + se6
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= {ψµ ,χ12,(1− p)y3ȳ3, pω
3
ω̄

3,(1−q)y4ȳ4,qω
4
ω̄

4,

(1− r)y5ȳ5,rω
5
ω̄

5,(1− s)y6ȳ6,sω
6
ω̄

6, η̄1, ψ̄1..5} (7.4)

B(2)
pqrs = S+b2 + pe1 +qe2 + re5 + se6

B(3)
pqrs = S+b3 + pe1 +qe2 + re3 + se4

where p,q,r,s = 0,1; b3 = b1 + b2 + x = 1+ S + b1 + b2 +∑
6
i=1 ei +∑

2
n=1 zn and x is given by

x = {ψ̄1,···,5, η̄1,2,3}. These sectors produce 16 and 16 representations of SO(10) decomposed
under SO(6)×SO(4)≡ SU(4)×SU(2)L×SU(2)R,

16 = (4, 2, 1)+ (4̄, 1, 2)

16 = (4̄, 2, 1)+ (4, 1, 2)

Each of the 48 sectors can give rise at most to one state. The GGSO projections can be recast as
algebraic equations. For example, for the chiral matter arising in the sectors above, we can write
projector equations in terms of the GGSO phases given in matrix form ∆iW i = Y i.

(e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )

(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )

(z1 |e3 ) (z1 |e4 ) (z1 |e5 ) (z1 |e6 )

(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )




p
q
r
s

=


(e1 |b1 )

(e2 |b1 )

(z1 |b1 )

(z2 |b1 )




(e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )

(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )

(z1 |e1 ) (z1 |e2 ) (z1 |e5 ) (z1 |e6 )

(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )




p
q
r
s

=


(e3 |b2 )

(e4 |b2 )

(z1 |b2 )

(z2 |b2 )

 (7.5)


(e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )

(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )

(z1 |e1 ) (z1 |e2 ) (z1 |e3 ) (z1 |e4 )

(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )




p
q
r
s

=


(e5 |b3 )

(e6 |b3 )

(z1 |b3 )

(z2 |b3 )


The total number of states then correspond to the total number of solutions for pqrs, which is
determined by the rank of the matrices ∆i relative to the rank of the augmented matrices (∆i,Y i)
[11]. Similarly, the chirality of the states, or the charges of the periodic fermions with respect to
the U(1) generators of the Cartan subalgebra, can be written as generic expressions in terms of the
GGSO phases. The vectorial SO(10) representations are obtained from the sectors B(i)

pqrs + x and
similar algebraic expressions are written. The entire massless spectrum can be extracted in a similar
fashion, and coded in a computer program. This enables exploration of the entire space of string
vacua and analysis of their massless spectra. In some cases the classification of the complete space
of solutions is not feasible and a statistical algorithm is developed by generating random choices
of GGSO projection phases. In figures 1 and 2 we display some of the results in the classification
of the Pati–Salam and flipped SU(5) models, respectively.
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Figure 1: Number of 3–generation models versus total number of exotic multiplets in a random sample of
1011 Pati-Salam configurations.

The striking observations is that while the Pati–Salam case admits exophobic three generation
models in the flipped SU(5) case exophobic models with an odd number of generations do not
appear. While positive confirmation, like the existence of a three generation exophobic model in
the Pati–Salam case, is easy to verify, understanding their absence in the flipped SU(5) case is
more challenging. For example, it may merely reflect their absence in the particular space sam-
pled. Nevertheless, the results shown in figures 1 and 2 exemplify the power of the classification
methodology in extracting properties of large spaces of string vacua. Using the random generation
of GGSO phases and imposing some prior criteria we can “fish” out models with desirable charac-
teristics, provided that the statistical sample of the models with the required properties is not too
small.

8. “Trolling” a model

A set of phases giving rise to a model with the desired properties is displayed in eq. (8.2).
As advertised the observable gauge symmetry in this model is SO(6)×SO(4)×U(1)1,2,3 and the
family universal combination, U(1)ζ = U(1)1 +U(1)2 +U(1)3, is anomaly free. The complete
massless spectrum, as well as the cubic level superpotential are derived in ref. [38]. The massless
chiral spectrum in the model appears in complete 27 representations of E6 decomposed under the
effective observable gauge group, i.e. the chiral spectrum is self–dual under the spinor–vector
duality. The model contains three chiral generations, as well as the required heavy and light Higgs
states to produce a realistic fermion mass spectrum. Furthermore, the model admits a top quark
mass term at the cubic level of the superpotential, i.e. λt ∼ 1 in the model. A VEV of the heavy
Higgs field that breaks the Pati–Salam symmetry to the Standard Model along flat directions leaves
the unbroken combination

U(1)Z′ =
1
5

U(1)C −
1
5

U(1)L−Uζ . (8.1)

This U(1) symmetry may remain unbroken down to low scales as it is anomaly free in this model.

13



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
4
3

Spinor-vector duality and light Z’ in heterotic string vacua Alon E. Faraggi

(vi|v j) =



1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

1 1 1 1 1 1 1 1 1 1 1 1 1 1
S 1 1 1 1 1 1 1 1 1 1 1 1 1
e1 1 1 0 0 0 0 0 0 0 0 0 0 1
e2 1 1 0 0 0 0 0 1 0 0 0 1 0
e3 1 1 0 0 0 1 0 0 0 0 0 1 1
e4 1 1 0 0 1 0 0 0 0 0 1 0 0
e5 1 1 0 0 0 0 0 1 0 0 0 1 1
e6 1 1 0 1 0 0 1 0 0 0 1 0 0
b1 1 0 0 0 0 0 0 0 1 1 0 0 0
b2 1 0 0 0 0 0 0 0 1 1 0 0 1
z1 1 1 0 0 0 1 0 1 0 0 1 1 0
z2 1 1 0 1 1 0 1 0 0 0 1 1 0
α 1 1 1 0 1 0 1 0 1 0 1 0 1



(8.2)

We note that maintaining the U(1)Z′ symmetry in eq. (8.1) unbroken down to low scales,
requires the existence of additional matter states down to the U(1)Z′ breaking scale. Existence of
this U(1) symmetry at this scale will be accompanied by additional states with specific Standard
Model and U(1)Z′ charges, which are mandated by anomaly cancellation and are compatible with
the charge assignments in the string model. The string models give rise to a variety of Standard
Model extensions, and each case is accompanied by specific additional states, which leads to unique
signatures [25].

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

N
u

m
b

e
r 

o
f

M
o

d
e
ls

n
g

Figure 2: Number of exophobic models versus the number of generations in a random sample of 1012

flipped SU(5) configurations.

An additional type of states that are of interest in this model are states that are SO(10) singlets
with non–standard U(1)ζ charges. Such states are standard states with respect to the Standard
Model charges, but are exotic states with respect to E6. They arise from the breaking of E6 in the
string model by Wilson lines, and fall into the general category of Wilsonian matter states discussed
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in ref. [39]. They may play the role of dark matter candidates. Breaking the U(1)Z′ symmetry with
states carry the standard conventional E6 charges, leaves a remnant discrete symmetry that forbids
the decay of the lightest exotic state to the lighter states [39]. The exotic states in this model are
particularly appealing because they are Standard Model, and in fact SO(10), singlets.

9. Conclusions

The available observational data at accessible energy scales favour the high scale unification
of the gauge interactions and matter representations in Grand Unified Theories. Gravity is left out
of this picture, and it is anticipated that may of the properties of the Standard Model particles, like
the origin of their masses, can only be determined if gravity is incorporated into the fold. However,
point quantum field theories have not led to a consistent synthesis with gravity, and it may well
be that consistent unification of gravity with the gauge interactions requires a departure from the
point particle idealisation. Contemporary string theories therefore provide a concrete framework
to explore the unification of gravity and the gauge interactions.

In this paper we discussed the construction of string derived models that allow for the ex-
istence of an extra U(1) symmetry at low scales. While the phenomenological analysis of such
symmetries received ample attention in the literature, the construction of heterotic–string models
that allow for a light Z′ gauge boson has proven to be problematic. One of the main difficulties
being that the desired symmetries tend to be anomalous in the string derived models and are broken
at the high scale. For this purpose we utilised the classification methodology developed in the free
fermionic formulation. We used the self–duality property under the spinor–vector duality to con-
struct a string model in which the E6 symmetries are anomaly free. This is obtained because due to
the self–duality property, the chiral spectrum arises in complete 27 representations of E6. However,
the remarkable point is that the gauge symmetry is not enhanced to E6, but remains a subgroup of
anomaly free SO(10)×U(1)ζ . This is possible because the different components in the 27 repre-
sentations are obtained from different fixed points of the Z2×Z2 orbifold. It is further noted that
while our exemplary model is free of exotic fractionally charged massless states, it contains states
that carry exotic states with respect to U(1)ζ , which are natural dark matter candidates. It will
be of further interest to explore whether similar characteristics can be obtained in other classes of
heterotic–string compactifications [40].
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