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1. Introduction

Kinetically modified Non-minimal (chaotic) inflation (nMI) [1] is a variant of nMI which arises
in the presence of a non-canonical kinetic term for the inflaton ϕ – apart from the non-minimal
coupling fR(ϕ) between ϕ and the Ricci scalar curvature, R which is required by definition in any
model of nMI [2]. In this talk we focus on inflationary models based on a synergy between fR and
the inflaton potential VCI, which are selected [1, 3, 4] as follows

VCI(ϕ) = λ 2ϕ n/2n/2 and fR = 1+ cRϕ n/2 with n = 2,4 . (1.1)

Below, we first (in Sec. 1.1) briefly review the basic ingredients of nMI in a non-Supersymmetric
(SUSY) framework and constrain the parameters of the models in Sec. 1.3 taking into account a
number of observational and theoretical requirements described in Sec. 1.2. Then (in Sec. 1.4)
we focus on the problem with perturbative unitarity that plagues [5, 6] these models at the strong
coupling and motivate the form of fK analyzed in our work.

Throughout the text, the subscript ,χ denotes derivation with respect to (w.r.t) the field χ ,
charge conjugation is denoted by a star (∗) and we use units where the reduced Planck scale mP =

2.43 ·1018 GeV is set equal to unity.

1.1 Coupling non-Minimally the Inflaton to Gravity

The action of the inflaton ϕ in the Jordan frame (JF), takes the form:

S=
∫

d4x
√
−g

(
− fR

2
R+

fK

2
gµν∂µϕ∂νϕ −VCI(ϕ)

)
. (1.2)

where g is the determinant of the background Friedmann-Robertson-Walker metric, gµν with sig-
nature (+,−,−,−), ⟨ fR⟩ ≃ 1 to guarantee the ordinary Einstein gravity at low energy and we allow
for a kinetic mixing through the function fK(ϕ). By performing a conformal transformation [3] ac-
cording to which we define the Einstein frame (EF) metric ĝµν = fR gµν we can write S in the EF
as follows

S=
∫

d4x
√

−ĝ

(
−1

2
R̂+

1
2

ĝµν∂µ ϕ̂∂ν ϕ̂ −V̂CI(ϕ̂)
)
, (1.3a)

where hat is used to denote quantities defined in the EF. We also introduce the EF canonically
normalized field, ϕ̂ , and potential, V̂CI, defined as follows:

dϕ̂
dϕ

= J =

√
fK

fR
+

3
2

(
fR,ϕ

fR

)2

and V̂CI =
VCI

f 2
R
, (1.3b)

where the symbol ,ϕ as subscript denotes derivation w.r.t the field ϕ . Plugging Eq. (1.1) into
Eq. (1.3b), we obtain

J2 =
fK

fR
+

3n2c2
Rϕ n−2

8 f 2
R

and V̂CI =
λ 2ϕ n

2n/2 f 2
R
. (1.4)

In the pure nMI [2–4] we take fK = 1 and, for cR ≫ 1, we infer from Eq. (1.3b), that fR determines
the relation between ϕ̂ and ϕ and controls the shape of V̂CI affecting thereby the observational
predictions – see below.
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1.2 Inflationary Observables – Constraints

A model of nMI can be qualified as successful, if it can become compatible with the following
observational and theoretical requirements:

(i) The number of e-foldings N̂⋆ that the scale k⋆ = 0.05/Mpc experiences during this nMI must
to be enough for the resolution of the horizon and flatness problems of standard Big Bang, i.e., [7]

N̂⋆ =
∫ ϕ̂⋆

ϕ̂f

dϕ̂
V̂CI

V̂CI,ϕ̂
≃ 55, (1.5)

where ϕ⋆ [ϕ̂⋆] are the value of ϕ [ϕ̂ ] when k⋆ crosses the inflationary horizon. Also ϕf [ϕ̂f] is the
value of ϕ [ϕ̂ ] at the end of nMI, which can be found, in the slow-roll approximation, from the
condition

max{ε̂(ϕf), |η̂(ϕf)|}= 1, where

ε̂ =
1
2

(
V̂CI,ϕ̂

V̂CI

)2

=
1

2J2

(
V̂CI,ϕ

V̂CI

)2

and η̂ =
V̂CI,ϕ̂ ϕ̂

V̂CI
=

1
J2

(
V̂CI,ϕϕ

V̂CI
−

V̂CI,ϕ

V̂CI

J,ϕ
J

)
· (1.6)

It is evident from the formulas above that non trivial modifications on fK and thus to J may have an
pronounced impact on the parameters above modifying thereby the inflationary observables too.

(ii) The amplitude As of the power spectrum of the curvature perturbation generated by ϕ at k⋆
has to be consistent with data [7], i.e.,

√
As =

1
2
√

3π
V̂CI(ϕ̂⋆)

3/2

|V̂CI,ϕ̂ (ϕ̂⋆)|
=

1
2π

√
V̂CI(ϕ⋆)

6ε̂⋆
≃ 4.627 ·10−5, (1.7)

where the variables with subscript ⋆ are evaluated at ϕ = ϕ⋆.

(iii) The remaining inflationary observables (the spectral index ns, its running as, and the tensor-
to-scalar ratio r) – estimated through the relations:

(a) ns = 1−6ε̂⋆ + 2η̂⋆, (b) as =
2
3
(
4η̂2 − (ns −1)2)−2ξ̂⋆ and (c) r = 16ε̂⋆ , (1.8)

with ξ̂ = V̂CI,ϕ̂V̂CI,ϕ̂ ϕ̂ ϕ̂/V̂ 2
CI – have to be consistent with the data [7], i.e.,

(a) ns = 0.968±0.009 and (b) r ≤ 0.12, (1.9)

at 95% confidence level (c.l.) – pertaining to the ΛCDM+r framework with |as| ≪ 0.01. Although
compatible with Eq. (1.9b) the present combined Planck and BICEP2/Keck Array results [8] seem
to favor r’s of order 0.01 since r = 0.048+0.035

−0.032 at 68% c.l. has been reported.

(iv) The effective theory describing nMI has to remains valid up to a UV cutoff scale ΛUV to
ensure the stability of our inflationary solutions, i.e.,

(a) V̂CI(ϕ⋆)
1/4 ≤ ΛUV and (b) ϕ⋆ ≤ ΛUV. (1.10)

It is expected that ΛUV ≃mP, contrary to the pure nMI with cR ≫ 1 where ΛUV ≪mP – see Sec. 1.4.
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1.3 The Two Regimes of Synergistic nMI

The models of nMI based on Eq. (1.1) exhibit the following two regimes:

(i) The weak cR regime with cR ≪ 1. In this case from Eq. (1.3b) we find J ≃ 1/ fR and applying
Eqs. (1.5) and (1.6), the slow-roll parameters and N̂⋆ read

ε̂ ≃ n2

2ϕ 2 fR
, η̂ ≃ 2

(
1− 1

n

)
ε̂ − 4+n

2n
cRϕ

n
2 ε̂ and N̂⋆ ≃

ϕ 2
⋆

2n
· (1.11)

Imposing the condition of Eq. (1.6) and solving then the latter equation w.r.t ϕ∗ we arrive at

ϕf ≃ n/
√

2 and ϕ⋆ ≃
√

2nN̂⋆ . (1.12)

Inflation is attained, thus, only for ϕ > 1. On the other hand, Eq. (1.7) implies

λ =
√

6As fn⋆πn(2−n)/4/N̂(2+n)/4
⋆ , (1.13)

where fn⋆ = fR(ϕ⋆) = 1+cR(2nN̂⋆)
n/4. Applying Eq. (1.8) we find that the inflationary observables

are cR-dependent and can be marginally consistent with Eq. (1.9) – see Sec. 3.2. Indeed,

ns = 1− (4+n+n/ fn⋆)/4N̂⋆, r = 4n/ fn⋆N̂⋆, (1.14a)

as =
(
n2 −n(n+4) fn⋆−4(n+4) f 2

n⋆
)
/16 f 2

n⋆N̂2
⋆ . (1.14b)

In the limit cR → 0 or fn⋆ → 1 the results of the simplest power-law chaotic inflation – with fR =

fK = 1 and VCI given in Eq. (1.1) – are recovered. These are by now disfavored by Eq. (1.9).

(ii) The strong cR regime with cR ≫ 1. In this case, from Eq. (1.3b) we find

J ≃
√

3ncRϕ n/2−1/2
√

2 fR and V̂CI ≃ λ 2/2n/2c2
R. (1.15)

We observe that V̂CI exhibits an almost flat plateau. From Eqs. (1.5) and (1.6) we find

ε̂ ≃ 4/3c2
Rϕ n, η̂ ≃−4/3cRϕ n/2 and N̂⋆ ≃ 3cRϕ n/2

∗ /4 . (1.16)

Therefore, ϕf and ϕ⋆ are found from the condition of Eq. (1.6) and the last equality above, as follows

ϕf = max{(4/3c2
R)

1/n,(4/3cR)
2/n} and ϕ⋆ = (4N̂⋆/3cR)

2/n. (1.17)

Consequently, nMI can be achieved even with subplanckian ϕ values for cR & (4N̂∗/3)2/n. Also
the normalization of Eq. (1.7) implies the following relation between cR and λ

A1/2
s ≃ 2−(10+n)/4 λcRϕ n

π fR

∣∣∣∣
ϕ=ϕ⋆

⇒ λ ≃ 3 ·2n/4

N̂⋆

√
2As π cR . (1.18)

From Eq. (1.8) we obtain the cR-independent values for the observables:

ns ≃ 1−2/N̂⋆ ≃ 0.965, as ≃−2/N̂2
⋆ ≃−6.4 ·10−4 and r ≃ 12/N̂2

⋆ ≃ 4 ·10−3, (1.19)

which are in agreement with Eq. (1.9), although with low enough r values.

4
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1.4 The Ultraviolet (UV) Cut-off Scale

In the highly predictive regime with large cK, the models violate perturbative unitarity for
n > 2. To see this we analyze the small-field behavior of the theory in order to extract the UV cut-
off scale ΛUV. The result depends crucially on the value of J in Eq. (1.3b) in the vacuum, ⟨ϕ⟩= 0.
Namely we have

⟨J⟩=

{√
3/2cR for n = 2,

1 for n ̸= 2 .
(1.20)

For n = 2 and any cR we obtain ϕ̂ ̸= ϕ . Expanding the second and third term of S in the right-hand
side of Eq. (1.3a) about ⟨ϕ⟩= 0 in terms of ϕ̂ we obtain:

J2ϕ̇ 2 =

(
1−
√

8
3

ϕ̂ +2ϕ̂ 2 −·· ·

)
˙̂ϕ

2
and V̂CI =

λ 2ϕ̂ 2

3c2
R

(
1−
√

8
3

ϕ̂ +2ϕ̂ 2 −·· ·

)
. (1.21)

As a consequence ΛUV = mP since the expansions above are cR independent. On the contrary, for
n > 2 we have ϕ̂ = ϕ and the expansions of the same terms in Eq. (1.3a) are cR dependent:

J2ϕ̇ 2 =

(
1− cRϕ̂

n
2 +

3n2

8
c2

Rϕ̂ n−2 + c2
Rϕ̂ n −·· ·

)
˙̂ϕ

2
; (1.22a)

V̂CI =
λ 2ϕ̂ n

2

(
1−2cRϕ̂

n
2 +3c2

Rϕ̂ n −4c3
Rϕ̂

3n
2 + · · ·

)
· (1.22b)

Since the term which yields the smallest denominator for cR > 1 is 3n2c2
Rϕ̂ n−2/8 we find [5, 6]:

ΛUV = mP/c2/(n−2)
R ≪ mP . (1.23)

However, if we introduce a non-canonical kinetic mixing of the form

fK(ϕ) = cK f m
R where cK = (cR/rRK)

4/n and m ≥ 0, (1.24)

no problem with the perturbative unitarity emerges for rRK ≤ 1, even if cR and/or cK are large –
the latter situation is expected if we wish to achieve efficient nMI with ϕ ≤ 1. E.g., for m = 0 the
expansions in Eqs. (1.22a) and (1.22b) can be rewritten replacing cR with rRK and λ with λ/cn/4

K
– similar expressions can be obtained for other m, too. In other words, the perturbative unitarity
can be preserved up to mP if we select a non-trivial fK such that ⟨J⟩ ̸= 1. This requirement lets a
functional uncertainty as regards the form of fK during nMI which can be parameterized as shown
in Eq. (1.24) given that ⟨ fR⟩ ≃ 1 – see Sec. 1.1.

We below describe a possible formulation of this type of nMI in the context of Supergravity
(SUGRA) – see Sec. 2 – and we then analyze the inflationary behavior of these models in Sec. 3.
We conclude summarizing our results in Sec. 4.

2. Supergravity Embeddings

The models above – defined by Eqs. (1.1) and (1.24) – can be embedded in SUGRA if we use
two gauge singlet chiral superfields zα = Φ,S, with Φ (α = 1) and S (α = 2) being the inflaton and
a “stabilizer” field respectively. The EF action for zα ’s can be written as [9]

S=
∫

d4x
√

−ĝ

(
−1

2
R̂ + Kαβ̄ ĝµν∂µzα∂νz∗β̄ −V̂

)
, (2.1a)

5
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where summation is taken over the scalar fields zα , K is the Kähler potential with Kαβ̄ = K,zα z∗β̄

and Kαβ̄ Kβ̄ γ = δ α
γ . Also V̂ is the EF F–term SUGRA potential given by

V̂ = eK
(

Kαβ̄ DαWD∗
β̄W ∗−3|W |2

)
, (2.1b)

where DαW = W,zα +K,zαW with W being the superpotential. Along the inflationary track deter-
mined by the constraints

S = Φ−Φ∗ = 0, or s = s̄ = θ = 0 (2.2)

if we express Φ and S according to the parametrization SUPERFIELDS: S Φ
U(1)R 1 0
U(1) −1 2/n

Table 1: Charge assignments of the
superfields.

Φ = ϕ eiθ/
√

2 and S = (s+ is̄)/
√

2 , (2.3)

VCI in Eq. (1.1) can be produced, in the flat limit, by

W = λSΦn/2. (2.4)

The form of W can be uniquely determined if we impose an R and a global U(1) symmetry with
charge assignments shown in Table 1.

On the other hand, the derivation of V̂CI in Eq. (1.4) via Eq. (2.1b) requires a judiciously chosen
K. Namely, along the track in Eq. (2.2) the only surviving term in Eq. (2.1b) is

V̂CI = V̂ (θ = s = s̄ = 0) = eKKSS∗ |W,S|2 . (2.5)

The incorporation fR in Eq. (1.1) and fK in Eq. (1.24) dictates the adoption of a logarithmic K [9]
including the functions

FR(Φ) = 1+2
n
4 Φ

n
2 cR , FK = (Φ−Φ∗)2 and FS = |S|2 − kS|S|4 . (2.6)

Here, FR is an holomorphic function reducing to fR, along the path in Eq. (2.2), FK is a real function
which assists us to incorporate the non-canonical kinetic mixing generating by fK in Eq. (1.24), and
FS provides a typical kinetic term for S, considering the next-to-minimal term for stability/heaviness
reasons [9]. Indeed, FK lets intact V̂CI, since it vanishes along the trajectory in Eq. (2.2), but it
contributes to the normalization of Φ. Taking for consistency all the possible terms up to fourth
order, K is written as

K1 =−3ln
(

1
2
(FR +F∗

R )+
cK

3 ·2m+1 (FR +F∗
R )

m FK − 1
3

FS +
kΦ

6
F2

K − kSΦ

3
FK|S|2

)
. (2.7a)

Alternatively, if we do not insist on a pure logarithmic K, we could also adopt the form

K2 =−3ln
(

1
2
(FR +F∗

R )−
1
3

FS

)
− cK

2m
FK

(FR +F∗
R )

1−m · (2.7b)

Moreover, if we place FS outside the argument of the logarithm similar results are obtained by the
following K’s – not mentioned in Ref. [1]:

K3 =−2ln
(

1
2
(FR +F∗

R )+
cK

2m+2 (FR +F∗
R )

m FK

)
+FS , (2.7c)

K4 =−2ln
FR +F∗

R

2
− cK

2m
FK

(FR +F∗
R )

1−m +FS . (2.7d)

6
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FIELDS EINGESTATES MASSES SQUARED

SYMBOL K = K1 K = K2 K = Ki+2

2 real scalars θ̂ m̂2
θ 4Ĥ2

CI 6Ĥ2
CI

1 complex scalar ŝ,̂̄s m̂2
s 6(2kS fR −1/3) Ĥ2

CI 12kSĤ2
CI

4 Weyl spinors ψ̂± m̂2
ψ± 3n2Ĥ2

CI/2cKϕ 2 f 1+m
R

Table 2: Mass-squared spectrum for K = Ki and K = Ki+2 (i = 1,2) along the path in Eq. (2.2).

Note that for m= 0 [m= 1], FR and FK in K1 and K3 [K2 and K4] are totally decoupled, i.e. no higher
order term is needed. Also we use only integer prefactors for the logarithms avoiding thereby any
relevant tuning – cf. Ref. [10]. Our models, for cK ≫ cR, are completely natural in the ’t Hooft
sense because, in the limits cR → 0 and λ → 0, the theory enjoys the enhanced symmetries

Φ → Φ∗, Φ → Φ+ c and S → eiαS, (2.8)

where c is a real number. It is evident that our proposal is realized more attractively within SUGRA
than within the non-SUSY set-up, since both fK and fR originate from the same function K.

To verify the appropriateness of K’s in Eqs. (2.7a) – (2.7d), we can first remark that, along the
trough in Eq. (2.2), these are diagonal with non-vanishing elements KSS∗ and KΦΦ∗ = J2, where J
is given by Eq. (1.4) for K = Ki and Eq. (1.4) replacing 3/8 by 1/4 for K = Ki+2. Substituting into
Eq. (2.5) KSS∗ = 1/KSS∗ and expK = 1/ f N

R , where

KSS∗ =

{
1/ fR

1
and N =

{
3

2
for K =

{
Ki

Ki+2
with i = 1,2, (2.9)

we easily deduce that V̂CI in Eq. (1.4) is recovered. If we perform the inverse of the conformal
transformation described in Eqs. (1.3a) and (1.2) with frame function Ω/N = −e−K/N we can
easily show that fR = −Ω/N along the path in Eq. (2.2). Note, finally, that the conventional
Einstein gravity is recovered at the SUSY vacuum, ⟨S⟩= ⟨Φ⟩= 0, since ⟨ fR⟩ ≃ 1.

Defining the canonically normalized fields via the relations dϕ̂/dϕ =
√

KΦΦ∗ = J, θ̂ = Jθϕ
and (ŝ,̂̄s)=√

KSS∗(s, s̄) we can verify that the configuration in Eq. (2.2) is stable w.r.t the excitations
of the non-inflaton fields. Taking the limit cK ≫ cR we find the expressions of the masses squared
m̂2

χα (with χα = θ and s) arranged in Table 2, which approach rather well the quite lengthy, exact
formulas. From these expressions we appreciate the role of kS > 0 in retaining positive m̂2

s . Also
we confirm that m̂2

χα ≫ Ĥ2
CI = V̂CI0/3 for ϕf ≤ ϕ ≤ ϕ⋆. In Table 2 we display the masses m̂2

ψ± of
the corresponding fermions too with eignestates ψ̂± = (ψ̂Φ ± ψ̂S)/

√
2, defined in terms of ψ̂S =√

KSS∗ψS and ψ̂Φ =
√

KΦΦ∗ψΦ, where ψΦ and ψS are the Weyl spinors associated with S and Φ
respectively. Note, finally, that m̂χα ≪ mP, for any χα , contrary to similar cases [11] where the
inflaton belongs to gauge non-singlet superfields.

Inserting the derived mass spectrum in the well-known Coleman-Weinberg formula, we can
find the one-loop radiative corrections, ∆V̂CI to V̂CI. It can be verified that our results are immune
from ∆V̂CI, provided that the renormalization group mass scale Λ, is determined conveniently and
kSΦ and kS are confined to values of order unity.

7
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3. Results

The present inflationary scenario depends on the parameters: n, m, rRK, λ/cn/4
K . Note that the

two last combinations of parameters above replace cK, cR and λ . This is because, if we perform
a rescaling ϕ = ϕ̃/√cK, Eq. (1.2) preserves its form replacing ϕ with ϕ̃ and fK with f m

R where fR

and VCI take, respectively, the forms

fR = 1+ rRKϕ̃ n/2 and VCI = λ 2ϕ̃ n/2n/2cn/2
K , (3.1)

which, indeed, depend only on rRK and λ 2/cn/2
K . Imposing the restrictions of Sec. 1.2 we can

delineate the allowed region of these parameters. Below we first extract some analytic expressions
– see Sec. 3.1 – which assist us to interpret the exact numerical results presented in Sec. 3.2.

3.1 Analytic Results

Assuming cK ≫ cR, Eq. (1.3b) yields J ≃√
cK/ f (1−m)/2

R . Inserting the last one and V̂CI from
Eq. (1.1) in Eq. (1.6) we extract the slow-roll parameters for this model as follows – cf. Eq. (1.11):

ε̂ = n2/2ϕ 2cK f 1+m
R and η̂ = 2(1−1/n) ε̂ − (4+n(1+m))cRϕ n/2ε̂/2n . (3.2)

Given that ϕ ≪ 1 and so fR ≃ 1, nMI terminates for ϕ = ϕf found by the condition

ϕf ≃ max{n/
√

2cK,
√

(n−1)n/cK} , (3.3)

in accordance with Eq. (1.6). Since ϕ⋆ ≫ ϕf, from Eq. (1.5) we find

N̂⋆ =
cKϕ 2

⋆

2n 2F1

(
−m,4/n;1+4/n;−cRϕ n/2

⋆

)
=

{
cKϕ 2

⋆ /2n for m = 0,

( f 1+m
R −1)/8(1+m)rRK for n = 4,

(3.4)

where 2F1 is the Gauss hypergeometric function. Concentrating on the cases with m = 0 or n = 4,
we solve Eq. (3.4) w.r.t ϕ⋆ with results

ϕ⋆ ≃


√

2nN̂⋆/cK for m = 0,
√

fm⋆−1/
√

rRKcK for n = 4,
(3.5)

where f 1+m
m⋆ = 1+8(m+1)rRKN̂⋆. In both cases there is a lower bound on cK, above which ϕ⋆ < 1

and so, our proposal can be stabilized against corrections from higher order terms – e.g., for n =

4,m = 1 and rRK = 0.03 we obtain 140 . cK . 1.4 ·106 for 3.3 ·10−4 . λ . 3.5. The correlation
between λ and cn/4

K can be found from Eq. (1.7). For m = 0 this is given by Eq. (1.13) replacing λ
with λ/cn/4

K and cR with rRK in the definition of fn⋆. For n = 4 we obtain

λ = 16
√

3As π cK r3/2
RK /( fm⋆−1)3/2 f (1+m)/2

m⋆ . (3.6)

As regards the inflationary observables, these are obviously given by Eqs. (1.14a) and (1.14b)
for the trivial case with m = 0. For m ̸= 0, however, these are heavily altered. In particular, for
n = 4 we obtain

ns = 1−8rRK
m−1− (m+2) fm⋆

( fm⋆−1) f 1+m
m⋆

, r =
128rRK

( fm⋆−1) f 1+m
m⋆

, (3.7a)

as =
64r2

RK(1+m)(m+2)

( fm⋆−1)2 f 4(1+m)
m⋆

f 2
m⋆

(
f 2m
m⋆

(
1−m
m+2

+
2m−1
m+1

fm⋆

)
− f 2(1+m)

m⋆

)
. (3.7b)

The formulae above is valid only for rRK > 0 – see Eq. (3.5) – and is simplified [1] for low m’s.
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Figure 1: Allowed curves in the ns − r0.002 plane for n = 2 and 4, m = 0 (dashed lines), m = 1 (solid lines),
m = 4 (dot-dashed lines), and various rRK’s indicated on the curves. The marginalized joint 68% [95%]
regions from Planck, BICEP2/Keck Array and BAO data are depicted by the dark [light] shaded contours.

3.2 Numerical Results

The conclusions obtained in Sec. 3.1 can be verified and extended to others n’s and m’s nu-
merically. In particular, enforcing Eqs. (1.5) and (1.7) we can restrict ϕ⋆ and λ/cn/4

K . Then we can
compute the model predictions via Eq. (1.8), for any selected m,n and rRK. The outputs, encoded
as lines in the ns − r0.002 plane, are compared against the observational data [7, 8] in Fig. 1 for
n = 2 (left panel) and 4 (right panel) setting m = 0,1 and 4 – dashed, solid, and dot-dashed lines
respectively. The variation of rRK is shown along each line. To obtain an accurate comparison, we
compute r0.002 = 16ε̂(ϕ0.002) where ϕ0.002 is the value of ϕ when the scale k = 0.002/Mpc, which
undergoes N̂0.002 = (N̂⋆+3.22) e-foldings during nMI, crosses the inflationary horizon.

From the plots in Fig. 1 we observe that, for low enough rRK’s – i.e. rRK = 10−4 and 0.001 for
n = 4 and 2 –, the various lines converge to the (ns,r0.002)’s obtained within the simplest models
of chaotic inflation with the same n. At the other end, the lines for n = 4 terminate for rRK = 1,
beyond which the theory ceases to be unitarity safe – as anticipated in Sec. 1.4 – whereas the n = 2
lines approach an attractor value, comparable with the value in Eq. (1.19), for any m.

For m = 0 we reveal the results of Sec. 1.3, i.e. the displayed lines are almost parallel for
r0.002 ≥ 0.02 and converge at the values in Eq. (1.19) – for n = 4 this is reached even for rRK = 1.
Our estimations in Eqs. (1.14a) – (1.14b) are in agreement with the numerical results for n = 2 and
rRK . 1 or n = 4 and rRK . 0.05. We observe that the n = 2 line is closer to the central values in
Eq. (1.9) whereas the n = 4 one deviates from those.

For m > 0 the curves change slopes w.r.t to those with m = 0 and move to the right. As
a consequence, for n = 4 they span densely the 1-σ ranges in Eq. (1.9) for quite natural rRK’s
– e.g. 0.005 . rRK . 0.1 for m = 1. It is worth mentioning that the requirement rRK ≤ 1 (for
n = 4) provides a lower bound on r0.002, which ranges from 0.004 for m = 0 to 0.015 (for m =

4). Therefore, our results are testable in the forthcoming experiments [12] hunting for primordial
gravitational waves. Note, finally, that our findings in Eqs. (3.7a) – (3.7b) approximate fairly the
numerical outputs for 0.003 . rRK ≤ 1.
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4. Conclusions

We reviewed the implementation of kinetically modified nMI in both a non-SUSY and a SUSY
framework. The models are tied to the potential VCI and the coupling function of the inflaton
to gravity given in Eq. (1.1) and the non-canonical kinetic mixing in Eq. (1.24). This setting
can be elegantly implemented in SUGRA too, employing the super-and Kähler potentials given
in Eqs. (2.4) and (2.7a) – (2.7d). Prominent in this realization is the role of a shift-symmetric
quadratic function FK in Eq. (2.6) which remains invisible in the SUGRA scalar potential while
dominates the canonical normalization of the inflaton. Using m ≥ 0 and confining rRK to the range
(3.3 ·10−3−1), where the upper bound does not apply to the n = 2 case, we achieved observational
predictions which may be tested in the near future and converge towards the “sweet” spot of the
present data – especially for n = 4. These solutions can be attained even with subplanckian values
of the inflaton requiring large cK’s and without causing any problem with the perturbative unitarity.
It is gratifying, finally, that the most promising case of our proposal with n = 4 can be studied
analytically and rather accurately.
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