
P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
9
9

Large muon (g − 2) from TeV-scale MSSM with infinite
tanβ

Jae-hyeon Park∗

Departament de Física Teòrica and IFIC, Universitat de València-CSIC, 46100, Burjassot, Spain
E-mail: jae.park@uv.es

Markus Bach, Dominik Stöckinger and Hyejung Stöckinger-Kim
Institut für Kern- und Teilchenphysik, TU Dresden, 01069 Dresden, Germany
E-mail: markus.bach1@tu-dresden.de, dominik.stoeckinger@tu-dresden.de,
hyejung.stoeckinger-kim@tu-dresden.de

FTUV–15–1070
IFIC–15–75

The muon anomalous magnetic moment aµ is studied in the infinite tanβ limit of the MSSM.
Since the muon mass arises completely from loop effects, large corrections to aµ are expected
in comparison to the usual case with moderately high tanβ. Due to the qualitatively different
parameter dependence, the gap between the experimental value and the Standard Model prediction
can be filled only in parameter volumes in which a mass hierarchy suppresses the chargino loop
in favour of the neutralino contribution. Two such possibilities are found to have either large
Higgsino mass or large muon sneutrino mass. Supersymmetric particles even at the TeV scale
can lead to the best fit of aµ .

18th International Conference From the Planck Scale to the Electroweak Scale
25-29 May 2015
Ioannina, Greece

∗Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:jae.park@uv.es
mailto:markus.bach1@tu-dresden.de
mailto:dominik.stoeckinger@tu-dresden.de
mailto:hyejung.stoeckinger-kim@tu-dresden.de


P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
9
9

Large muon (g − 2) from TeV-scale MSSM with infinite tanβ Jae-hyeon Park

The muon anomalous magnetic moment, aµ ≡ (gµ − 2)/2, has long been a prime observable
sensitive to hypothetical virtual states, and hence a major indirect probe to new physics. Currently,
there is an interesting discrepancy between the experimental and the Standard Model (SM) values
of aµ [1]:

aexp
µ − aSM

µ = (28.7 ± 8.0) × 10−10, (1)

which amounts to more than 3σ. This has called for many attempts to fill the gap with various new
physics contributions.

In this respect, one noteworthy property of aµ is that it is correlated with loop corrections to
the muon mass mµ . This is easy to see by comparing the schematic diagrams of aµ and the muon
self energy Σµ , shown in figure 1. Manifestly, attaching a photon line to the Σµ graph on the right

µL µR
←→

µL µR
Σµ

Figure 1: Diagrammatic similarity between aµ (left) and the muon self energy (right).

results in the aµ diagram on the left. This means that large loop corrections to mµ generically
imply large contributions to aµ .

For this reason, there have been significant interests in models where mµ arises solely from
loop effects. This idea may be realized for instance within a popular model such as the minimal
supersymmetric standard model (MSSM). In this model, the tree-level muon mass is given by

mtree
µ = yµvd , (2)

the product of yµ , the muon Yukawa coupling, and vd , the vacuum expectation value (VEV) of
the down-type Higgs. Obviously, this leads to the following two options to eliminate the tree-
level muon mass: (a) yµ = 0 or (b) vd = 0. There are already studies which employ the former
approach while using the non-holomorphic [2] or the holomorphic [3] smuon trilinear coupling
for the radiative generation of mµ . We consider the latter option focusing on the supersymmetric
contributions to aµ [4] which shall be the subject of this presentation.

The supersymmetric contributions to aµ at the one-loop level are well-known in the MSSM
[5]. They arise from the chargino-sneutrino and the neutralino-smuon diagrams which depend on
the following five mass parameters: the Higgsino mass µ, the bino mass M1, the wino mass M2 as
well as the soft masses of the left- and the right-handed smuons, mL and mR . In a simplified case
where all these five parameters are equal to MSUSY, the above contributions can be approximated
by

aSUSY,1L
µ ≈ 13 × 10−10 sign(µ) tanβ

(
100 GeV
MSUSY

)2

. (3)

One can notice the following properties of aSUSY,1L
µ : (a) it is suppressed by the second power of

MSUSY, the new physics scale, (b) it is proportional to tanβ, (c) its sign is determined by the sign
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of µ. For a usual value of tanβ . 60, the best fit of (1) is achieved only if MSUSY . 500 GeV. Now
that the Large Hadron Collider is putting more and more stringent lower bounds on the supersym-
metric particle masses, one may consider how to fit (1) even for higher MSUSY.

To this end, a straightforward attempt would be to push tanβ up beyond the usual range. This
has been however a less explored possibility. The fear is mostly based on the perturbativity of the
down-type Yukawa couplings. As they are proportional to tanβ under the tree-level approximation,
one might naively expect them to grow nonperturbatively large for too high tanβ. It is however
well-known that the down-type fermion masses can receive significant loop corrections which pick
up the up-type Higgs VEV vu [6]. This effect may be expressed in the form,

m f = y f vd + y f vu ∆
red
f , (4)

where m f is the pole mass of f standing for a charged lepton or down-type quark, y f is its Yukawa
coupling, and ∆red

f
is a finite quantity calculable from the self energy diagrams. This implies that

m f might be correct even if vd is unconventionally small or even vanishes. Indeed, it has been
shown that such a possibility can meet various phenomenological constraints [7, 8].

With ∆red
f

from (4) taken into account, the supersymmetric contribution to aµ becomes [9]

aSUSY
µ =

aSUSY,1L
µ

1 + tanβ∆red
µ

≡
yµvu

mµ
ared
µ , (5)

where aSUSY,1L
µ , appearing on the left-hand side of (3), is the supersymmetric one-loop contribution

to aµ without resummation of tanβ-enhanced terms. One can understand the first equality above
in the following way. Due to the chiral symmetry, both aSUSY

µ and aSUSY,1L
µ contain a factor of

yµ which is rewritten in terms of the other quantities appearing in (4). This replacement is done
however to differing accuracies, i.e. the ∆red

f
term in (4) is neglected for aSUSY,1L

µ whereas it is
included for aSUSY

µ . The above resummation formula then follows. Another quantity ared
µ is defined

in (5), in terms of which the infinite tanβ limit of aSUSY
µ reads simply

lim
tan β→∞

aSUSY
µ =

ared
µ

∆red
µ

, (6)

which follows from (4) and (5).
In this limit, one can again consider a simplified case where the five mass parameters are the

same to obtain an expression analogous to (3). This results in

lim
tanβ→∞

aSUSY
µ ≈ −72 × 10−10

(
1 TeV
MSUSY

)2

. (7)

For the same new physics scale MSUSY, the magnitude of aSUSY
µ above does greatly exceed that of

(3) valid for moderate tanβ. Unfortunately, the sign turns out to be wrong which, being independent
of the µ sign, seems unfixable. This is because the diagrams of both ared

µ and∆red
µ pick up a Higgsino

mass due to the Peccei-Quinn symmetry and therefore the µ sign cancels out of (6).
It is still early to give up. One can get a hint on how to overcome this sign problem by closer

inspection of the structures of ared
µ and ∆red

µ appearing in the fraction of (6). Schematically, the
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contributions to the numerator and the denominator look like

lim
tanβ→∞

aSUSY
µ =

ared
µ

∆red
µ

∼ +
(
χ± term

)
+

(
χ0 terms

)
−( χ± term

)
+

(
χ0 terms

) , (8)

i.e. both ared
µ and ∆red

µ consist of the chargino terms and the neutralino terms whose diagrams
are shown in figure 2 in the mass insertion approximation. The last fraction above is intended

µL ν̃µ

W̃−

W̃−

µR

H̃−
d

H̃−u

(a)

µL µ̃L

W̃ 0

W̃ 0

µR

H̃0
d

H̃0
u

(b)

µL µ̃L

B̃

B̃

µR

H̃0
d

H̃0
u

(c)

µL µ̃R

H̃0
d

H̃0
u

µR

B̃

B̃

(d)

µL µ̃L

B̃

µR

B̃

µ̃R

(e)

Figure 2: Mass-insertion diagrams for ∆red
µ and ared

µ . For the latter, an external photon couples to
any of the charged particles in the loop.

to mean that the numerical values of the chargino terms in ared
µ and ∆red

µ have opposite signs to
each other whereas the neutralino terms have the same sign. When the five mass parameters are
of similar sizes, the chargino terms tend to dominate in both ared

µ and ∆red
µ thereby resulting in

negative aSUSY
µ . A way to turn around the sign would then be to let the neutralino terms dominate

or equivalently to suppress the chargino terms in both ared
µ and ∆red

µ . For this, one may suppress
any of the propagators forming the loop of the chargino graph in figure 2(a), as long as some of the
neutralino diagrams survive. This leads to the following three solutions: (a) “large-µ limit” which
suppresses the Higgsino propagators as shown in figure 3 while leaving diagram 3(e) unsuppressed,
(b) “µ̃R-dominance” which suppresses the sneutrino propagator by raising mL as shown in figure 4
while maintaining the contribution from figure 4(d), (c) suppression of the wino propagators as in
figure 5 [as well as the µ̃R propagators to isolate diagram 5(c)] by raising |M2 | and mR . It turns
out that solution (c) requires extreme mass hierarchies to work in practice and is therefore less
interesting than the other two options.

As explained above, aSUSY
µ is invariant under a µ sign flip. Furthermore, a simultaneous sign

flip of both M1 and M2 leaves aSUSY
µ in (6) invariant, as one can understand from each diagram in

figure 2 which picks up the sign of either M1 or M2. Taking advantage of these symmetries, we
shall assume in what follows that µ and M1 are positive without loss of generality while leaving
the M2 sign free.

With the above qualitative observations in mind, one can examine in more detail how the sign
of aSUSY

µ depends on the mass parameters. Two plots are shown in figure 6 employing the mass
insertion approximation under which the sign of aSUSY

µ is fully determined by the ratios of the
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µL ν̃µ

W̃−
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H̃−
d

H̃−u

(a)

µL µ̃L

W̃ 0

W̃ 0

µR

H̃0
d

H̃0
u

(b)

µL µ̃L

B̃

B̃

µR

H̃0
d

H̃0
u

(c)

µL µ̃R

H̃0
d

H̃0
u

µR

B̃

B̃

(d)

µL µ̃L

B̃

µR

B̃

µ̃R

(e)

Figure 3: Same diagrams as in figure 2 in the “large-µ limit”. Grey lines represent mass-suppressed
propagators.

µL ν̃µ

W̃−

W̃−
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(a)

µL µ̃L

W̃ 0

W̃ 0

µR

H̃0
d

H̃0
u

(b)

µL µ̃L

B̃

B̃

µR

H̃0
d

H̃0
u

(c)

µL µ̃R

H̃0
d

H̃0
u

µR

B̃

B̃

(d)

µL µ̃L

B̃

µR

B̃

µ̃R

(e)

Figure 4: Same diagrams as in figure 2 in the case of “µ̃R-dominance”. Grey lines represent mass-
suppressed propagators.

five mass parameters. In figure 6(a), the origin at which the mass parameters are equal leads to
negative aSUSY

µ as already seen in (7). In the same plot, one finds indeed the two types of regions
where aSUSY

µ is positive as expected from the aforementioned mass hierarchies: the white regions
on the right and around the upper border correspond to the “large-µ limit” and “µ̃R-dominance”,
respectively. The less interesting solution (c) is visible as a small white area around the left part of
the bottom border of figure 6(b), in which |M2 | and mR are much larger than the other three mass
parameters.

Given a set of the mass parameter ratios leading to the desired sign of aSUSY
µ , its size can be

adjusted to fit (1) by choosing an overall mass scale. Obviously, the higher the mass scale is, the
smaller aSUSY

µ becomes. We parametrize the scale by MSUSY,min, the smallest of {µ,M1, |M2 |,mL ,mR }.
The results are presented in figure 7 in which one finds regions with colours corresponding to
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Figure 5: Same diagrams as in figure 2 in the case where M1, µ,mL � |M2 |,mR . Grey lines
represent mass-suppressed propagators.
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Figure 6: Sign of aSUSY
µ on the plane of (µ/mR ,mL/mR) for the two signs of M2. The remaining

two mass ratios are fixed as shown above each plot. The sign of aSUSY
µ in each region is: + in white,

sign(−M2) in red, sign(+M2) in hatched, − in overlap.
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Figure 7: Values of MSUSY,min for the best fit of aSUSY
µ are represented on the plane of

(µ/mR ,mL/mR) as the gradation of colour, for (a) positive and (b) negative M2. The grey regions
lead to negative aSUSY

µ . The contour lines indicate yµ . In the white regions, |yµ | is nonperturba-
tively large. The blue diamonds are the specimen points from table 1.

MSUSY,min around 1 TeV or higher. This reveals a promising possibility that supersymmetric parti-
cles at the TeV-scale or higher can explain (1), which is the motivation to consider the infinite tanβ
limit in this work.

For this scenario to be viable, it must meet all relevant constraints. The lepton flavour violating
process µ→ eγ can be suppressed by assuming small enough slepton mixing between the first two
generations. The correlation between µ → eγ and aµ [10] still holds for tanβ → ∞. One can
also satisfy B-physics constraints [8]. The most dangerous decay mode is B+ → τ+ν to which
the charged Higgs exchange contribution can be suppressed enough by raising MH± to a few TeV.
Pollution to Bs → µ+µ− and B → Xs γ can be suppressed with vanishing At and flavour-violating
squark mass insertions. For the former and the latter processes, it further helps to raise the heavy
Higgs and the squark masses, respectively. One can make the lightest Higgs mass and decays
SM-like by staying in the decoupling regime [11].

Moreover, we impose the following constraints: (a) charginos and smuons are heavier than
100 GeV, (b) yµ is perturbative, (c) our vacuum is stable or long-lived on the cosmological time-
scale. To evaluate the false vacuum lifetime, we use the method from ref. [12]. Each of these
requirements excludes some regions depicted in figure 8. The plots show that great parts of the
“large-µ” region for negative M2 as well as the “µ̃R-dominance” region for either sign of M2

7
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Figure 8: Regions on the plane of (µ/mR ,mL/mR) excluded by the constraints indicated in the
legend, for (a) positive and (b) negative M2. The blue diamonds are the specimen points from
table 1.

survive the constraints. This means that there are indeed parameter volumes in which TeV-scale
supersymmetric particles can account for the measured value of aµ . We also check that yτ and yb ,
the tau and the bottom Yukawas, can be perturbative and consistent with the vacuum metastability.
Even though mτ , bigger than mµ , might cause a worry about too large |yτ |, there is room for
perturbative radiative generation of mτ since (gτ−2) does not need to be explained. The even larger
bottom quark pole mass can also be perturbatively generated thanks to the gluino-loop contribution
in addition to the other types of loops shared by the tau self energy.

The concrete values of the five mass parameters at selected points from figures 7 and 8 are
listed in table 1. The first two points belong to the “large-µ limit” with negative M2, and the rest to
the “µ̃R-dominance” regime with either sign of M2.

To find maximal MSUSY,min which can fit aµ , we explore the full five-dimensional parameter
space, relaxing the equalities, M1 = mR and |M2 | = µ, which we assumed for the sake of planar
presentation of the preceding plots. The resulting maximum MSUSY,min is plotted in figure 9. The
plots reveal that the relaxation of the above mass equalities allows MSUSY,min to be slightly higher
than before.

For a compact summary, we derive a formula resembling (7),

aSUSY
µ ≈ 37 × 10−10

(
1 TeV
MSUSY

)2

, (9)
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µ M1 M2 mL mR aSUSY
µ /10−9 yµ Characteristic

30 1 −30 1 1 2.80 0.04 large-µ

15 1 −1 1 1 3.01 0.09 large-µ

1 1 1 15 1 2.64 −1.37 µ̃R-dominance

1 1 30 30 1 2.77 −1.18 µ̃R-dominance

1.3 1.3 −1.3 26 1.3 2.90 −1.89 µ̃R-dominance

Table 1: Specimen points leading to a reasonable fit of aµ . Masses are in TeV.
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Figure 9: Maximum MSUSY,min that can fit aµ as a function of (a) mL/M1 for M2 > 0 and (b) µ/M1

for M2 < 0. Each line style indicates to which regime the point belongs as well as the cutoff on
|yµ |. The vacuum metastability is required.

which applies if either |µ| � |M1 | = mL = mR ≡ MSUSY or mL � |µ| = |M1 | = mR ≡ MSUSY.
These are two mass hierarchies representative of the “large-µ limit” and the “µ̃R-dominance”,
respectively.

In summary, we considered the infinite tanβ limit of the MSSM as a possibility to account
for the discrepancy between the experimental value and the SM prediction of aµ even if the su-
persymmetric particles are as heavy as 1 TeV or higher. The motivation was the observation that
fully radiative muon mass generation would imply large new physics effects on aµ . We found
two successful types of mass hierarchies, the “large-µ limit”, and the “µ̃R-dominance”, which al-
lowed us to achieve the goal. We took into account phenomenological constraints from collider
searches, flavour and Higgs physics, as well as theoretical constraints from perturbativity and vac-
uum metastability. For more details of the analysis, we refer the reader to ref. [4].

For those aµ enthusiasts, we add a note on GM2Calc, a calculator of the MSSM contributions
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to aµ [13]. It can approximate the infinite tanβ limit as it works for arbitrarily high tanβ.
J.P. acknowledges support from the MEC and FEDER (EC) Grant FPA2011–23596 and the

Generalitat Valenciana under Grant PROMETEOII/2013/017.
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