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The mechanism of gauge mediated supersymmetry breaking (GMSB) solves the supersymmet-
ric flavor problem although it requires superheavy stops to reproduce the experimental value
(125 GeV) of the Higgs mass. A possible way out is to extend the MSSM Higgs sector with
triplets which provide extra tree-level corrections to the Higgs mass. Triplets with neutral compo-
nents getting vacuum expectation values (VEV) have the problem of generating a tree-level cor-
rection to the ρ parameter. We introduce supersymmetric triplets with hypercharges Y = (0,±1),
with a tree-level custodial SU(2)L⊗SU(2)R global symmetry in the Higgs sector protecting the ρ

parameter: a supersymmetric generalization of the Georgi-Machacek model. The renormalization
group running from the messenger to the electroweak scale mildly breaks the custodial symmetry.
We will present realistic low-scale scenarios, their main features being a Bino-like neutralino or
right-handed stau as the NLSP, light (1 TeV) stops, exotic couplings (H±W∓Z and H±±W∓W∓)
absent in the MSSM and proportional to the triplet VEV, and a possible (measurable) universality
breaking of the Higgs couplings λWZ =

(
ghWW/gSM

hWW

)
/
(
ghZZ/gSM

hZZ

)
6= 1.
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1. Introduction

ATLAS and CMS have discovered a scalar boson with properties consistent with those of the
Standard Model (SM) Higgs and a mass ∼ 125 GeV [1, 2]. Whether it actually is the SM depends
on possible (future) deviations from the SM predictions in Higgs strengths (e.g. in the γγ , or any
other channel).

However the SM suffers (as an effective theory with cutoff Λ∼MP) from a naturalness prob-
lem by which the Higgs mass receives huge (quadratic) corrections [3]

∆m2 '− 3
32π2v2

(
m2

H +2m2
W +m2

Z−4m2
t
)

Λ
2 (1.1)

The paradigmatic solution to the problem of quadratic divergences is supersymmetry by which
the previous correction cancels out. In particular the minimal SM supersymmetric extension
(MSSM) 1.

The mechanism of supersymmetry breaking is a big unknown. The standard assumption is
that supersymmetry is broken in a hidden sector and transmitted to the observable sector either
through gravitational, or gauge messengers. On the other hand supersymmetry can create an addi-
tional supersymmetric flavor problem unless the messenger interaction is flavor diagonal. This is
the case when messengers transmit supersymmetry breaking by gauge interactions. The so-called
Gauge Mediated Supersymmetry Breaking (GMSB). In particular GMSB provides

• Sfermion squared masses m2
f̃ by two-loop diagrams

• Gaugino Majorana masses Ma by one-loop diagrams

• Very small stop mixing At by two-loop diagrams.

Because of the latter GMSB has a difficulty to reproduce large values of the Higgs mass and re-
quires superheavy stop (t̃) masses. This problem has been analyzed in Refs [5, 6]. The conclusion
reached by these papers is that, for large values of tanβ , there is a lower bound on the stop mass
as mt̃ & 10 TeV. Of course for small values of tanβ , tanβ ' 1, the bound can be as much large as
mt̃ ∼ 1010 GeV [7].

Two options do appear to tackle this problem in GMSB theories without extending the SM
gauge group:

1. To introduce an extended GMSB which generates large values of At by direct messenger-
MSSM superpotential couplings. However, extended GMSB does not necessarily lead to
minimal flavor violation as the flavor constraints require a special flavor texture [8].

2. To extend the MSSM adding extra tree-level contributions to the Higgs mass: Introducing
singlets S and/or Y = (0,±1), Σ0,±1 triplets. Singlets do not acquire a mass unless in an
extended GMSB scenario and triplets generate ∆ρ when getting a VEV v∆.

To tackle the ρ problem in the presence of triplets Σ0,±1, either v∆ → 0 (m2
Σ
→ ∞) which is not

possible in GMSB, or we provide custodial global SU(2)L⊗SU(2)R symmetry to the triplet sector,

1For a recent analysis of quadratic divergences in the MSSM see Ref. [4] and references therein.
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which is the approach we will deal with in the present work. This approach was proposed in
1985 by Georgi and Machachek [9] in a seminal paper were they showed how to introduce triplet
VEVs while protecting the ρ parameter by a custodial symmetry. This theory has been recently
supersymmetrized in a series of papers, Refs. [10, 11, 12, 13], where a custodial symmetry is
introduced in the Higgs superpotential and where the ρ parameter is protected. This theory is
dubbed supersymmetric custodial triplet model (SCTM) and will be used in this work.

2. Overview of the SCTM

We assume the supersymmetric theory to be invariant under SU(2)L⊗ SU(2)R, only broken
by Yukawa and hypercharge interactions. We add to the MSSM Higgs sector H1 = (H0

1 ,H
−
1 )T and

H2 = (H+
2 ,H0

2 )
T , with respective hypercharges Y = (−1/2, 1/2), three SU(2)L triplets ΣY with

hypercharges Y = (−1, 0, 1), which we represent by two dimensional matrices as [10]

Σ−1 =

(
χ−√

2
χ0

χ−− − χ−√
2

)
, Σ0 =

 φ 0
√

2
φ+

φ− − φ 0
√

2

 , Σ1 =

(
ψ+
√

2
ψ++

ψ0 −ψ+
√

2

)
. (2.1)

where Q= T3L+Y . They are organized under SU(2)L⊗SU(2)R as H̄ = (2, 2̄), and ∆̄= (3, 3̄) where

H̄ =

(
H1

H2

)
, ∆̄ =

(
− Σ0√

2
−Σ−1

−Σ1
Σ0√

2

)
(2.2)

and T̄3R =−T3R =Y . The invariant products for doublets A ·B≡ AaεabBb and anti-doublets Ā · B̄≡
ĀaεabB̄c are defined by ε21 = ε12 = 1.

The total superpotential can be written as W =W0 +WY , where

W0 = λ H̄ · ∆̄H̄ +
λ3

3
tr∆̄3 +

µ

2
H̄ · H̄ +

µ∆

2
tr∆̄2 (2.3)

is the SU(2)L⊗ SU(2)R invariant superpotential, while the Yukawa coupling superpotential is de-
fined as WY = ht QL ·H2tR +hb QL ·H1bR + · · ·. Thus the pure Higgs sector superpotential respects
the SU(2)L⊗ SU(2)R invariance, while the superpotential Yukawa terms (as well as gauge terms
provided by U(1)Y gauge interactions) explicitly break it.

Gauge mediation will generate masses at the messenger scale M . The generated mass spec-
trum at M will be SU(2)L⊗SU(2)R invariant, except for the gauge contributions O(α2

1 ). However,
this violation is similar to the violation of the custodial symmetry induced by the hypercharge cou-
pling in the renormalization group (RG) running and does not spoil the main phenomenological
features of the model. The RG running will split the custodial invariants of the superpotential. The
most general superpotential can then be written as

W = −λaH1 ·Σ1H1 +λbH2 ·Σ−1H2 +
√

2λcH1 ·Σ0H2 +
√

2λ3trΣ1Σ0Σ−1

− µH1 ·H2 +
µa

2
trΣ

2
0 +µbtrΣ1Σ−1 +ht QL ·H2tR +hb QL ·H1bR (2.4)

where the SU(2)L⊗SU(2)R invariant situation is recovered when λa = λb = λc ≡ λ and µa = µb ≡
µ∆.
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The total potential is then V = VF +VD +Vsoft, where VF is the supersymmetric potential ob-
tained from the superpotential (2.4), VD is the potential from D-terms given in (A.5) and Vsoft the
soft breaking potential given in Eq. (A.6). The SU(2)L⊗SU(2)R conditions in the supersymmetry
breaking sector would be given by: mH1 = mH2 ≡mH , mΣ0 = mΣ1 = mΣ−1 ≡mΣ, Ba = Bb ≡ B∆ and
Aa = Ab = Ac ≡ Aλ .

We now expand the neutral components of the fields in a totally general way as in Ref. [11]
X = 1√

2
(vX +XR + ıXI), where X = H0

1 ,H
0
2 ,φ

0,χ0,ψ0, and we parametrize the departure from
custodial symmetry through three angles as

v1 =
√

2cosβvH , v2 =
√

2sinβvH ,

vψ = 2cosθ1 cosθ0v∆, vχ = 2sinθ1 cosθ0v∆,

vφ =
√

2sinθ0v∆. (2.5)

The parametrization preserves the relation v2 ≡ 2v2
H + 8v2

∆
, and we recover the SU(2)V invariant

vacuum when tanβ = tanθ0 = tanθ1 = 1, v1 = v2 ≡ vH and vψ = vχ = vφ ≡ v∆.
We now need to solve the equations of motion (EoM) ensuring correct EW breaking. Five

neutral scalar fields will generate five minimization conditions that will fix five parameters. As the
parameters m2

3 and B∆a,b have their RG equations decoupled from the rest, we can consistently fix
two parameters, e.g. m2

3 and B∆a , from their respective EoMs. The other three EoM self consistently
determine the values of the custodial breaking angles (tanβ , tanθ0, tanθ1) which, given a set of
custodial boundary conditions at the messenger scale, are a prediction of the EoMs for a given
value of v∆

2. In turn this determines the ρ parameter as ρ = 1+∆ρ where

∆ρ =
2(2v2

φ
− v2

ψ − v2
χ)

v2
1 + v2

2 +4(v2
χ + v2

ψ)
=−4

cos2θ0v2
∆

v2
H +8cos2 θ0v2

∆

. (2.6)

Notice that only tanθ0 affects the ρ parameter.
The EoMs are just criticality conditions as they do not tell us whether we are really exploring

a minimum of the potential, and much less if this minimum is the absolute one. The minimum
condition will be provided by the absence of tachyonic states in the scalar spectrum. Moreover
each minimum we find is likely the deepest one since it consists on a smooth deformation of an
SU(2)V preserving minimum where the D-terms vanish, therefore with minimized energy.

In the next section we will present a particular mechanism of gauge mediation by which soft
masses are generated at the messenger scale M and the physical spectrum is obtained after running
the soft masses down to the electroweak scale. As minimal gauge mediation (MGM) [14] provides
a very rigid framework to encompass low energy phenomenology we will consider a particular
model of general gauge mediation [15] (GGM) where there is more flexibility to accommodate
the supersymmetric mass spectrum of the SCTM. We will also consider low scale gauge mediation
M = 100 TeV to minimize the effect of the custodially breaking running. As the group transmitting
supersymmetry breaking is the SM group, the boundary conditions at M are custodial invariant
except for the contribution of the U(1)Y which breaks as usual custodial symmetry.

2More details can be found in the Appendix.
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3. Gauge mediation in SCTM

We will consider a model where messengers transform only under one of the SM gauge groups
SU(3)⊗ SU(2)L ⊗U(1)Y and will choose (non-exotic) representations which are contained in
SU(5). In particular we choose the messenger representations [13]

Φ8 = (8,1)0, Φ3 = (1,3)0 and
[
Φ1 = (1,1)1, Φ̄1 = (1,1)−1

]
. (3.1)

According with GGM we will explore the more general case where the messengers have indepen-
dent mass terms instead of getting all their mass from the spurion superfield. For simplicity, we
also consider that the scalar component of X does not acquire a VEV, thus 〈X〉 = θ 2F and the
superpotential couplings of messengers with the superfield X

W = (λ8X +M8)Φ8Φ8 +(λ3X +M3)Φ3Φ3 +(λ1X +M1)Φ̄1Φ1 (3.2)

Moreover for simplicity we will consider a common messenger scale so that we will assume MA ≡
M (A = 8,3,1).

Within this setup and with Λ8≡ λ8Λ, Λ3≡ λ3Λ and Λ1≡ λ1Λ (Λ≡F/M ) the gaugino masses
at the messenger scale are,

M3 =
α3(M )

4π
3n8Λ8, M2 =

α2(M )

4π
2n3Λ3 M1 =

α1(M )

4π

6
5

n1Λ1 , (3.3)

where we are using SU(5) normalization for the U(1). The sfermion squared masses at the mes-
senger scale are

m2
f̃ = 2

[
C f

3

(
α3(M )

4π

)2

3n8Λ
2
8 +C f

2

(
α2(M )

4π

)2

2n3Λ
2
3 +C f

1

(
α1(M )

4π

)2 1
2

(
6
5

)2

n1Λ
2
1

]
,

(3.4)
where n8, n3 and n1 are the of number of copies of each messenger respectively 3.

We can then write, at one loop, an RG invariant gaugino mass relation which will be different
from the minimal case M1(M )/α1(M ) = M2(M )/α2(M ) = M3(M )/α3(M ). In particular

M1(M )

α1(M )
:

M2(M )

α2(M )
:

M3(M )

α3(M )
=

6
5

n1λ1 : 2n3λ3 : 3n8λ8 . (3.5)

The free parameters are then λA,nA (A = 8,3,1) and
√

F , M .
In this scenario of low supersymmetry breaking the lightest supersymmetric particle (LSP) is

the gravitino, with a mass

m3/2 '
F

MP
(3.6)

where MP = 2.4×1018 GeV is the reduced Planck mass, it is therefore the dark matter candidate in
the theory. The collider phenomenology depends on the mass of the next to lightest supersymmetric
particle (NLSP). A quick glance at Eqs (3.3) and (3.4) shows that the NLSP can be either the lightest
neutralino χ̃0

1 or the right-handed stau τ̃R. We will use as bechmark scenarios those based on the
ATLAS search for direct production of charginos, neutralinos and sleptons in final states with two
leptons and missing transverse momentum [16].

3In the case of n1, it is the number of pairs (Φ1,Φ̃1) due to anomaly cancelation.
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4. Benchmark scenarios in the SCTM

Our main goal is to achieve light stop masses within the context of gauge mediation. Due to
the strongest color contribution, if gluinos are heavier than stops they will raise the stop masses
through the RG running, making their boundary condition at the messenger scale unimportant. In
a gauge mediated context we can generally say that the heavier the gluino the heavier the stop.
Therefore we will fix the gluino mass at the electroweak scale as low as possible consistently with
the most stringent bounds released by the LHC data [17] M3 = 1.5 TeV. For the value of M = 100
TeV this will fix the supersymmetry breaking parameter F .

The NLSP will play an important role in the phenomenology of the model. In particular
in each of the benchmark scenarios studied below, because of the low values of

√
F the decay

NLSP→ G̃+ ... will be prompt, i.e. it will decay inside the detector but with no displaced vertex,
and the experimental signature will be an imbalance in the final state momenta and a pair of photons
or charged leptons. Now from the ATLAS results there are two main scenarios:

SCENARIO 1: BINO-LIKE NLSP

mτ̃R > m
χ̃0

1
: in this case the experimental bounds are [16]

mτ̃R > m
χ̃0

1
& 100 GeV, mτ̃L > 350 GeV (4.1)

SCENARIO 2: RIGHT-HANDED STAU NLSP

mτ̃R < m
χ̃0

1
: in this case the experimental bounds are [16]

mτ̃R > 250 GeV, mτ̃L > 250 GeV (4.2)

4.1 Bino-like NLSP

This scenario is realized for the following values of the parameters

n1 = 1, n3 = 2, n8 = 6 and λ1 = 0.9, λ3 = 0.5, λ8 = 0.1 . (4.3)

The SU(2)L⊗ SU(2)R invariant λ of the superpotential will be fixed at the messenger scale such
that the correct Higgs mass is reproduced, λ (M ) = 0.68. We also fix the superpotential parameter
λ3(M ) = 0.35, although it will have little effect on the low energy spectrum. The boundary condi-
tions at the messenger scale of µ (and µ∆) are adjusted to make sure that the vacuum is close enough
to the direction tanθ0 = 1, and ρ falls within the allowed T parameter band, T = 0.01±0.12 [19].
In this case we choose them to be

µ(M ) = µ∆(M ) = 1.3 TeV (4.4)

Because of the strong effect of the top quark Yukawa coupling, the running differentiates the
two soft doublet masses from each other much more than the three triplet ones among themselves.
This behaviour which is explicitly shown in Fig. 1 will result in a much bigger vacuum misalign-
ment in the doublet sector. We are therefore left with a situation at the weak scale where tanβ 6= 1
and (tanθ0, tanθ1 ∼ 1) and so the loop contributions to the ρ parameter coming from the doublet
(MSSM) sector will be dominant.

6
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Figure 1: Left panel: Running of (m2
H1
,m2

H2
) (dashed lines) and (m2

Σ0
,m2

Σ1
,m2

Σ−1
) (solid lines), normalized

to their values at the messenger scale for benchmark scenario 1. Right panel: Running of gaugino (solid:
M3 orange, M2 blue and M1 red) and squark (dashed: mQ̃ black, mt̃ gray and mb̃ brown) mass parameters
for benchmark scenario 1.

In this scenario the NLSP will mainly decay to the gravitino through the following process
χ0

1 → γG̃. If we know its mass and the supersymmetry breaking scale
√

F we can calculate the
average distance travelled in the LAB frame by an NLSP produced with energy E before it decays.
In this scenario

√
F = 94 TeV and m

χ0
1
= 143 GeV, this translates in an average distance of flight

LNLSP
Scenario1well below the detector precision (∼ 0.1 cm) even if the particle is produced with very

high energy and really boosted.
The fermionic spectrum satisfies the relation

M1

α1
:

M2

α2
:

M3

α3
= 1.08 : 2 : 1.8 (4.5)

The lightest fermion is a Bino-like neutralino. The next neutralino and first chargino correspond to
a Wino-like multiplet, since M2 at the low scale is around 450−500 GeV. In this scenario χ̃0

2 and
the lightest chargino χ̃

±
1 are (quasi) degenerate in mass. The ATLAS supersymmetric searches [16]

on χ̃0
2 χ̃
±
1 production followed by W and Z decays, combined with three-lepton searches, exclude a

mass region for degenerate χ̃0
2 and χ̃

±
1 between 100 GeV and 410 GeV. These bounds are satisfied

since the mass of χ̃0
2 and χ̃

±
1 is ∼ 473 GeV. The heavier states are doublet-like Higgsinos and

tripletinos. Fig. 2 shows the different mass values for Scenario 1.
The normalized couplings of the Higgs to vector bosons and fermions are defined as

rhXX =
ghXX

gSM
hXX

with X =V (W,Z), f (t,b,τ) (4.6)

From the values of rhXX one can also compute the predicted signal strength µhXX of the decay
channel h→ XX , with X =V, f ,γ:

µhXX =
σ(pp→ h)BR(h→ XX)

[σ(pp→ h)BR(h→ XX)]SM
(4.7)

In particular for the gluon-fusion (gF), the associated production with heavy quarks (htt), the as-
sociated production with vector bosons (V h) and the vector boson fusion (VBF) production pro-
cesses, one can write µ

(gF)
hXX = µ

(htt)
hXX = r2

h f f r
2
hXX/D and µ

(V BF)
hXX = µ

(V h)
hXX = r2

hVV r2
hXX/D . Where

7
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Figure 2: Left panel: Scalar spectrum for scenario 1. MSSM-like scalars are quoted as so. Right panel:
Fermion spectrum for scenario 1.

D ' 0.74r2
h f f + 0.26r2

hVV . The Higgs couplings and signal strengths for scenario 1 are presented
in Tab. 1.

Scenario 1 WW ZZ bb̄ tt̄ γγ

rhXX 1.05 1.04 1.01 1.01 1.22

µ
(gF)
hXX ,µ

(htt)
hXX 1.07 1.05 1 0.99 1.45

µ
(WF)
hXX ,µ

(Wh)
hXX 1.16 1.14 1.08 1.07 1.58

µ
(ZF)
hXX ,µ

(Zh)
hXX 1.14 1.11 1.06 1.05 1.54

Table 1: Higgs couplings and signal strengths for scenario 1.

4.2 Right-handed stau NLSP

This scenario is realized for the following values of the parameters

n1 = 10, n3 = 6, n8 = 5 and λ1 = 0.9, λ3 = 0.5, λ8 = 0.2 . (4.8)

The SU(2)L⊗ SU(2)R invariant λ of the superpotential will be fixed at the messenger scale such
that the correct Higgs mass is reproduced λ (M ) = 0.78. We also fix the superpotential parameters
λ3(M ) = 0.35 and µ(M ) = µ∆(M ) = 1.5 TeV. The τ̃ will decay into the gravitino through
τ̃ → τG̃. In this case

√
F = 73 TeV and mτ̃ = 343 GeV and one finds that LNLSP

Scenario2 < LNLSP
Scenario1.

The fermion spectrum satisfies

M1

α1
:

M2

α2
:

M3

α3
= 10.8 : 6 : 3 (4.9)

8
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and this different hierachy is explicit in Fig. 3, with a fermion spectrum heavier than in the previous
case, also satisfying all present experimental bounds. The Higgs couplings and signal strengths for
scenario 2 are presented in Tab. 2.

hMSSM
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HMSSM
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AMSSM
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Figure 3: Left panel: Scalar spectrum for scenario 2. MSSM-like scalars are quoted as so. Right panel:
Fermion spectrum for scenario 2.

Scenario 2 WW ZZ bb̄ tt̄ γγ

rhXX 1.05 1.04 1.01 1.0 1.17

µ
(gF)
hXX ,µ

(htt)
hXX 1.07 1.06 0.99 0.95 1.35

µ
(WF)
hXX ,µ

(Wh)
hXX 1.16 1.15 1.08 1.05 1.46

µ
(ZF)
hXX ,µ

(Zh)
hXX 1.15 1.14 1.07 1.03 1.45

Table 2: Higgs couplings and signal strengths for scenario 2.

4.3 Final comments

Both scenarios are in agreement with the ATLAS current measurements within the present
uncertainties. However as the precision will increase, the measurements of Higgs properties will
offer one of the most promising avenues to probe this model. The Higgs is a doublet-like state
and therefore its couplings to vector bosons and fermions will not be greatly modified, since the
rest of the doublet-like spectrum is heavy enough. However because custodial invariance is broken
at the electroweak scale by the RG running it turns out that there is a corresponding breaking of
universality as the parameter λWZ = rWW/rZZ departs from one. In particular as we can see from
Tab. 1, λWZ−1' 1% for the benchmark scenario 1 and λWZ−1' 3% for the benchmark scenario

9
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2. This breaking of universality was considered in Ref. [11] as one of the possible smoking guns
of our model.

Loop induced couplings like hγγ can have large modifications. New charged triplet-like light
scalar states like H± or H±± are present and will modify the coupling by circulating along the
loop. The lighter these particles are, the greater their effect will be in rhγγ and since the masses of
triplet-like states scale with v∆, h→ γγ will soon put bounds on v∆.

5. Smoking guns

In our model there is an extended fermiophobic triplet Higgs sector, absent from the usual su-
persymmetric extensions of the Standard Model, whose neutral components can acquire a sizeable
VEV v∆. As a consequence there is a rich phenomenology by new singly (H±) and doubly charged
(H±±) scalars which, if light can contribute sizeably in loops to rγγ . On top of that there are two
main signatures very characteristic of the model which can be considered as smoking guns of it.

• The couplings H±W∓Z and H±±W∓W∓ are proportional to v∆ and can thus provide unique
signatures for models with extended Higgs sector contributing to the electroweak symmetry
breaking mechanism

H±→W±Z, (absent for doublets in the MSSM or the 2HDM)

H±±→W±W± . (5.1)

The composition of the lightest charged Higgs H± is shown in Fig. 4.

2.5 3.0 3.5 4.0 4.5 5.0
0.0
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Figure 4: Plot that shows the composition of the lightest H± state for points computed with different values
of the messenger mass scale, M . Thick lines correspond to components coming from the triplet sector and
dashed ones are components of the doublet sector. The lightest H± will be dominantly triplet like even
including the custodial breaking caused by the running, this means that its couplings to gauge bosons will
be weighted by the factor ∼ v∆/v. The other possible smoking gun of the model, the doubly charged state
H±± will be totally triplet as there is no doubly charged component coming from the doublet sector.

• One can measure the amount of custodial breaking [18] by the departure of the universality
parameter λWZ ≡ rWW/rZZ from one.

10
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6. Conclusion

We will summarize the conclusions in the following items.

1. Introducing triplets with hypercharges Y = (0,±1) permits to use GMSB with light (∼ 1
TeV) stops, thus alleviating the little hierarchy problem of the MSSM.

2. Custodial symmetry requires low-scale supersymmetry breaking. In our model we have
considered

√
F ' 70−90 TeV.

3. The typical pattern for the values of Ma/αa is strongly spoiled. The spectrum is completely
different from that of the typical MGM.

4. The triplet VEVs can contribute with a non negligible amount to the mechanism of elec-
troweak breaking. A very interesting fact that will be explored by the LHC as well as the
next generation colliders.

5. The couplings H±W∓Z and H±±W∓W∓ (absent in the MSSM) are proportional to v∆ and
can thus provide unique signatures for models with extended Higgs sector contributing to the
electroweak symmetry breaking mechanism.

6. One can measure the amount of custodial breaking by the departure from one of the univer-
sality parameter λWZ ≡ rWW/rZZ .

7. It can provide, as type II seesaw models, a renormalizable neutrino Majorana mass term
from the ∆L = 2 superpotential Wν = hi j

ν LiΣ1L j. This term would break explicitly custodial
invariance but by a tiny amount due to the smallness of the Yukawa coupling hν .

A. Electroweak minimum

We will here make a systematic study of the custodially broken minimum (induced by radia-
tive corrections) at the electroweak scale starting from a theory at the scale M which is custodially
symmetric. For pedagogical reasons we will start with the case of the MSSM with custodial sym-
metry at M .

A.1 Warming up with the MSSM

In the MSSM the Higgs potential is a function of two fields V =V (h2,h1) the real parts of the
neutral components of the Higgs doublets (H2,H1). These two degrees of freedom will make up
the CP-even MSSM mass eigenstates (h,H). At the minimum the VEVs are defined as v2 = vsinβ

and v1 = vcosβ . The equations of minimum ∂V/∂H0
2,1 = 0 provide the equations

m2
2−m2

3 cotβ − m2
Z

2
cos2β = 0 (A.1)

m2
1−m2

3 tanβ +
m2

Z

2
cos2β = 0 (A.2)

where we are defining m2
1,2 ≡ m2

H1,H2
+ |µ|2. Now the linear combinations Eq. (A.1) ± Eq. (A.2)

lead respectively to

11
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m2
3 =

tanβ

tan2 β +1
(m2

1 +m2
2) (A.3)

tan2
β =

m2
1 +

1
2 m2

Z

m2
2 +

1
2 m2

Z
(A.4)

where we are assuming m2
1 ≥ m2

2.
Now we can first assume that the Higgs sector has custodial symmetry and that therefore

m1 = m2. In this case we see that Eq. (A.4) is identically satisfied for tanβ = 1, which is pre-
cisely the custodial symmetric minimum, while Eq. (A.3) yields m2

3 = (m2
1 +m2

2)/2 which is the
condition for electroweak symmetry breaking (EWSB). Second, we will assume that the theory
is custodially symmetric at the scale M where supersymmetry breaking is communicated to the
observable sector. In this case, as there are couplings which do not respect the custodial symmetry
(in particular g1 and ht), even if m1 = m2 at Q = M at the EW scale, the latter equality will not
hold. In this case at the EW scale a value tanβ 6= 1 will be generated and the value of m2

3 will then
be correspondingly obtained from Eq. (A.3).

A.2 The Custodial Supersymmetric Triplet Model

We will now apply the previous procedure to the case of the Supersymmetric Triplet model
with custodial symmetry. The Higgs sector is custodially invariant at the scale M but the RGE
running will spoil the custodial symmetry mainly because the couplings (g1,ht) break it. So in
principle (as the MSSM example above) we should write the most general potential for this theory.
This can be done from the superpotential for the neutral components of the Higgs doublets (H1,H2)

and triplets (Σ1,Σ0,Σ−1) with superpotential given in Eq. (2.4). The potential is then V =VF +VD+

Vsoft where VF is the supersymmetric potential obtained from the superpotential (2.4),

VD =
g2

2 +g2
1

8
(|H1|2−|H2|2 +2|χ|2−2|ψ|2)2 (A.5)

and

Vsoft = m2
H1

H†
1 H1 +m2

H2
H†

2 H2 +m2
Σ0

Σ
†
0Σ0 +m2

Σ1
Σ

†
1Σ1 +m2

Σ−1
Σ

†
−1Σ−1−m2

3H1 ·H2

+

{
Ba

2
trΣ2

0 +BbtrΣ1Σ−1−AaH1 ·Σ1H1 +AbH2 ·Σ−2H2

+
√

2AcH1 ·Σ0H2 +
√

2Aλ3 trΣ1Σ0Σ−1 +at Q̃L ·H2t̃R +ab Q̃L ·H1b̃R +h.c.
}

(A.6)

The custodial invariance translates into the following boundary conditions at Q = M

λa = λb = λc ≡ λ

µa = µb ≡ µ∆

mH2 = mH1 ≡ mH

mΣ0 = mΣ1 = mΣ−1 ≡ m∆

Aa = Ab = Ac ≡ Aλ

Ba = Bb ≡ B∆ (A.7)
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The EoM are the solutions to the equations ∂V/∂H1 = ∂V/∂H2 = ∂V/∂ψ = ∂V/∂φ = ∂V/∂ χ =

0 which are satisfied at the (real part of the) field VEVs (h1,h2,ψ,φ ,χ) = (v1,v2,vψ ,vφ ,vχ).
The equation (1/H1)∂V/∂H1 +(1/H2)∂V/∂H2 = 0 allows to trade the parameter m2

3 by the
other supersymmetric parameters, as

1
sin2β

[
m2

3−Acvφ −λc(λ3vχvΨ +λcv1v2 +µavφ )−2(λcvφ −µ)(λavψ +λbvχ)
]

=
1
2
(m2

Hu
+m2

Hd
)+Aavψ +Abvχ +(λ3vφ +µb)(λbvψ +λavχ)

+ λ
2
a v2

1 +λ
2
b v2

2 +(λcvφ −µ)2 +2
[
λ

2
a v2

ψ +λ
2
b v2

χ

]
(A.8)

where tanβ = v2/v1. The value of m2
3 from Eq. (A.8) is now replaced into the equation (1/H1)∂V/∂H1−

(1/H2)∂V/∂H2 = 0 which then becomes

g2
1 +g2

2
2

(v2
2− v2

1 +2v2
ψ −2v2

χ) = 2cos2β (λcvφ −µ)2

+ 2cos2
β
{

m2
Hd

+2Aavψ +2λa(λ3vφ +µb)vχ +2λ
2
a (v

2
1 +2v2

ψ)
}

− 2sin2
β

{
m2

Hu
+2Abvχ +2λb(λ3vφ +µb)vψ +2λ

2
b (v

2
2 +2v2

χ)
}

(A.9)

This equation is identically satisfied in the custodial limit.
Likewise, equation (1/ψ)∂V/∂ψ +(1/χ)∂V/∂ χ yields the parameter Bb as a function of the

other supersymmetric parameters as

v2
ψ + v2

χ

vψvχ

[
−Bb−A3vφ −λ3(λcv1v2 +µavφ +λ3vψvχ)

]
=

m2
Σ1
+m2

Σ−1
+(λ3vφ +µb)

(
λav2

1
vχ

+
λbv2

2
vψ

)
+2(λ3vφ +µb)

2 +4(λ 2
a v2

1 +λ
2
b v2

2)

+
Aav2

1 +2λav1v2(λcvφ −µ)

vψ

+
Abv2

2 +2λbv1v2(λcvφ −µ)

vχ

(A.10)

The value of Bb is then replaced into equation (1/ψ)∂V/∂ψ− (1/χ)∂V/∂ χ which then becomes

(g2
1 +g2

2)(v
2
2− v2

1 +2v2
ψ −2v2

χ) =−2
v2

ψ − v2
χ

v2
ψ + v2

χ

(λ3vφ +µb)
2

− 2
v2

ψ

v2
ψ + v2

χ

{
m2

Σ1
+4λ

2
a v2

1 +(λ3vφ +µb)
λbv2

2
vψ

+
Aav2

1 +2λav1v2(λcvφ −µ)

vψ

}
+ 2

v2
χ

v2
ψ + v2

χ

{
m2

Σ−1
+4λ

2
b v2

2 +(λ3vφ +µb)
λav2

1
vχ

+
Abv2

2 +2λbv1v2(λcvφ −µ)

vχ

}
(A.11)

Again this equation is identically satisfied in the custodial limit. Finally the value of Ba is obtained
from the equation ∂V/∂φ = 0 as

−
[
Ba +µ

2
a +m2

Σ0

]
vφ = (Ac +λcµa)v1v2 +(A3 +λ3µa)vψvχ

+ λcv1(2λbv2vχ +λcv1vφ − v1µ)+λcv2(2λav1vψ +λcv2vφ − v2µ)

+ λ3vχ

[
λav2

1 + vχ(λ3vφ +µb)
]
+λ3vψ

[
λbv2

2 + vψ(λ3vφ +µb)
]

(A.12)
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If we define B∓ = Ba∓Bb then the EoM for B− is

B− = A3

(
vφ −

vψvχ

vφ

)
+

1
v2

ψ + v2
χ

[
vψvχ(m2

Σ1
+m2

Σ−1
)− (v2

ψ + v2
χ)m

2
Σ0

]
+ λ3

[
λcv1v2 +λav2

1

(
vφ vψ

v2
ψ + v2

χ

−
vχ

vφ

)
+λbv2

2

(
vφ vχ

v2
ψ + v2

χ

−
vψ

vφ

)]

+ λ
2
3

[
vψvχ

2v2
φ
+ v2

ψ + v2
χ

v2
ψ + v2

χ

− (v2
ψ + v2

χ)

]
+µ

2
b

2vψvχ

v2
ψ + v2

χ

−µ
2
a

+ λ3vφ

[
µa

(
1−

vψvχ

v2
φ

)
+µb

(
4vψvχ

v2
ψ + v2

χ

−
v2

ψ + v2
χ

v2
φ

)]

+
Aav2

1vψ +Abv2
2vχ

v2
ψ + v2

χ

−Ac
v1v2

vφ

+µb
λav2

1vψ +λbv2
2vχ

v2
ψ + v2

χ

−µa
λcv1v2

vφ

+ (λcvφ −µ)

[
2v1v2

λavχ +λbvψ

v2
ψ + v2

χ

−λc
v2

1 + v2
2

vφ

]

+ 4(λ 2
a v2

1 +λ
2
b v2

2)
vψvχ

v2
ψ + v2

χ

−2λcv1v2
λavψ +λbvχ

vχ

(A.13)

which is also identically satisfied in the custodial limit. In fact we have written the different lines
of Eq. (A.13) in such a way that they cancel independently in the custodial limit. Finally the
parameters m2

3, and B+ are given by Eqs. (A.8), and (A.10) and (A.12), respectively. Eqs. (A.9),
(A.11), and (A.13), which are identically satisfied in the custodial limit, will be used to compute
the departure from the custodial symmetry triggered by the RGE running.

As Eqs. (A.9), (A.11), and (A.13) do not depend on the parameters m2
3 and B+, we will use

them to compute the departure of the vacuum solution with respect to the custodial configuration
by considering the general field configuration

tanβ =
v2

v1
, v1(β ) =

√
2cosβvH , v2(β ) =

√
2sinβvH

tanθ1 =
vχ

vψ

, tanθ0 =

√
2vφ√

v2
ψ + v2

χ

vψ = 2cosθ1 cosθ0v∆, vχ = 2sinθ1 cosθ0v∆, vφ =
√

2sinθ0v∆ (A.14)

where we have introduced two Euler angles θ0 and θ1 characterizing the triplet VEV direction.
Notice that v2 = v2

1 + v2
2 + 2(2v2

φ
+ v2

ψ + v2
χ) = 2v2

H + 8v2
∆

(where v = 174 GeV) for any value of
tanβ and tanθ1,0 so that one can trade the parameter vH by v∆. In fact from the configuration in
Eq. (A.14) the breaking of custodial symmetry (and the value of the T parameter) is measured by
(tan2 θ0−1) as

αT =
2v2

φ
− (v2

ψ + v2
χ)

1
2(v

2
1 + v2

2)+2(v2
ψ + v2

χ)
=−4

cos2θ0 v2
∆

v2
H +8cos2 θ0v2

∆

(A.15)

Using the field configuration of Eq. (A.14) we can write an explicit solution to Eq. (A.9) as

tan2
β =

Pa−Pb +
√
(Pa−Pb)2 +4QaQb

2Qb
(A.16)
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where Pa,b and Qa,b are given by

Pa = m2
H1

+2Aavψ +2λavχ(λ3vφ +µb)+4λ
2
a v2

ψ +(λcvφ −µ)2 +
g2

1 +g2
2

2
(v2

H + v2
χ − v2

ψ)

Pb = m2
H2

+2Abvχ +2λbvψ(λ3vφ +µb)+4λ
2
b v2

χ +(λcvφ −µ)2 +
g2

1 +g2
2

2
(v2

H + v2
ψ − v2

χ)

Qa = Pa +4v2
Hλ

2
a , Qb = Pb +4v2

Hλ
2
b (A.17)

and where vφ ,ψ depend on θ0,1 through Eq. (A.14). In the custodial limit Eq. (A.16) yields tanβ =

1. Notice that Eq. (A.16) is a straightforward generalization of the similar one for the MSSM,
Eq. (A.4).

Now on general grounds Eqs. (A.9), (A.11), and (A.13) should be solved numerically, after
running the RGE, to get the correct values of tanβ , tanθ0 and tanθ1. Eq. (A.8) will determine the
value of m2

3(QEW ) and the equation for B+ [a linear combination of Eqs. (A.12) and (A.10)] will
fix the custodial value B∆ at the high scale M .
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