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1. On the discrete origin of the neutrino mass

It is well known that neutrino oscillations are tightly connected to the existence of non-zero

neutrino masses and the mixing in the leptonic sector. Recent neutrino data are in accordance with

two large mixing angles and a tiny value for the third one. In fact, adopting the parametrization

C =







c12c13 c13s12 s13e−iδ

−c23s12 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23

s12s23 − c12c23s13eiδ −c23s12s13 − c12s23eiδ c13c23






(1.1)

(where ci j ≡ cosθi j etc) for the leptonic mixing matrix, the 3σ range of the angles is given by

sin2 θ12 = [0.26−0.36]

sin2 θ23 = [0.34−0.66]

sin2 θ13 = [0.017−0.031]·
(1.2)

It has been suggested [1]-[21] that the given structure of the mixing matrix indicates the ex-

istence of underlying symmetries. The simplest implementation of such groups into the lepton

sector has predicted a tri-bimaximal (TB) mixing [1] with a strictly zero value for θ13. However,

recent experimental findings suggest a small non-zero value around θ13 ≈ 90. In the present work

we explore possibilities related to more elaborate forms of mass textures, since effective models

emerging from unified theories in higher dimensions involve a variety of continuous or discrete

groups which act as family symmetries.

2. Formulation

It has been shown that small permutation groups like S4,A4 constitute good approximate sym-

metries which, under specific alignments of the vacuum expectation values of the various Higgs

fields, generate mℓ,ν matrices compatible with TB-mixing. One way for obtaining a non-zero value

for θ13 is to consider deformations of the simple TB mass matrices. Then, we can explore the pos-

sibility of still having an underlying group structure in this new landscape. One way to achieve this

is by expressing the (hermitean) mass matrices as linear combinations of appropriate representa-

tions of finite group elements. Candidate groups are all the finite groups or subgroups that possess

a 3× 3 matrix representation. If the mass matrices M are not hermitean but complex symmetric,

the formalism applies to the hermitean combination MM∗.

2.1 Expanding mass matrices in terms of discrete group elements.

An interesting property of the simple TB mass matrix structure is that the diagonalising matrix

is independent of the mass eigenvalues. This way, and using the Cayley Hamilton theorem [12],

we may write a 3×3 Hermitean mass matrix M in the form

M = c1I + c2U + c3U
2 (2.1)

where U is a 3× 3 unitary matrix. This unitary matrix obviously constitutes a symmetry of M.

Without loss of generality we impose the condition detU = 1, so that U can always be brought in
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the form

D =







eiλ 0 0

0 1 0

0 0 e−iλ






(2.2)

by means of a similarity transformation (modulo permutations of the eigenvalues). Observing that

U and M can be simultaneously diagonalised, it follows that the mixing associated to the mass

matrix M can be simply obtained by diagonalising the matrix U . The eigenmasses are given only

in terms of the coefficients ci, and the value of the phase λ ,

m1 −m3 = 2 i (c2 sinλ + c3 sin2λ )

m1 +m3 = 2(c1 + c2 cos λ + c3 cos 2λ )

m2 = c1 + c2 + c3 ·
(2.3)

Hence, the mass eigenvalues problem is essentially disentangled from the diagonalising matrix.

3. Deforming the TB-mixing matrix

Assume now that the generators U of the mass matrices are elements of a discrete group.

It follows that they must satisfy relations of the form Un = 1 for some integer value of n. Their

eigenvalues will be e
2πi
n , e−

2πi
n , 1 in some order and can be diagonalised by means of a unitary

transformation to produce a diagonal matrix Di,n where the subscript i refers to the eigenvalues

ordering. This way, for the charged leptons we have

Ul =VlDi,nV
†

l (3.1)

and for he neutrinos

Uν =Vν D j,mV †
ν . (3.2)

Hence, the mixing matrix is

C =V
†
l Vν . (3.3)

If Ul and Uν belong to the same group they must satisfy a relation of the form

(UlUν)
p = 1 . (3.4)

Also,

UlUν =VlDnV
†
l VνDmV †

ν =VlDnCDmC†V
†
l =VlT V

†
l (3.5)

where

T = DnCDmC† · (3.6)

This way,

(UlUν)
p =VlT

pV
†
l (3.7)

Because of (3.4), for some integer p the left part of the above equation is the unit matrix, hence

we must have T p = 1 for the same integer p. This implies that one eigenvalue of T must be 1

3
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Di,n D j,m n m p

1 1 3 2 4

2 2 3 2 3

3 3 2 2 4

1 3 n 2 2

2 3 2 2 4

3 2 3 2 3

1 2 3 2 3

Table 1: Solutions for TB-mixing

while the other two must be e
2πi

p , e
− 2πi

p respectively, since the determinant of T is 1. The trace of

T equals 1+2cos 2π
p

. Therefore, we must seek solutions of the form

1+2cos
2π

p
= TrT (3.8)

for given values of m and n. In the cases where TrT takes complex values there is no solution. Let

us now define

D1,m = Diagonal
[

1,e
2πi
m ,e−

2πi
m

]

(3.9)

D2,m = Diagonal
[

e
2πi
m ,1,e−

2πi
m

]

(3.10)

D3,m = Diagonal
[

e
2πi
m ,e−

2πi
m ,1

]

· (3.11)

Next, as a starting point we take the matrix C to be the TB-mixing matrix. This is readily de-

rived from (1.1) for sin2 θ12 = 1/3,sin2 θ23 = 1/2,θ13 = 0, and choosing the phases appropriately,

C can be written as

C =









√

2
3
− 1√

3
0

1√
6

1√
3

− 1√
2

1√
6

1√
3

1√
2









·

A subsequent search leads to a limited number of solutions depicted in Table 1. In this table,

we use a five integer notation (i, j,n,m, p) where i,n refer to the matrix Di,n for the charged leptons,

j,m refer to the matrix D j,m for the neutrinos, and p as in Eq.(3.4).

Note that the m value which refers to the neutrinos turns out always to be 2.

The lepton mass matrix is then written as

Ml = c1I + c2Ul + c3U
2
l (3.12)

Ul =VlDi,nV
†

l (3.13)

while the neutrino mass matrix is written as

Mν = d1I+d2Uν +d3U
2
ν (3.14)

Uν =Vν D j,mV †
ν · (3.15)
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In fact, U2
ν = 1 since the only acceptable solutions are for m = 2 meaning that the coefficient d3

does not exist. This reduction in the degrees of freedom creates a degeneracy in the neutrino mass

spectrum. This way, for D1,2 we get m2 = m3 for D2,2 we get m1 = m3 and for D3,2 we get m1 = m2

respectively. Thus, we can either have an exact discrete symmetry with a degenerate neutrino

spectrum or a non degenerate spectrum with a broken symmetry. In the latter case one may choose

a diagonal neutrino mass matrix i.e. Md = Diagonal[m1,m2,m3] and construct the actual matrix

through the relation

Mν =VνMdV †
ν ·

The matrices Vl and Vν are arbitrary unitary matrices connected by the relation

C =V
†
l Vν . (3.16)

Table 1 can be used to construct mass matrices that lead to an exact TB mixing. Models where n= 2

(third column values) lead to a degenerate spectrum for the charged leptons and are therefore un-

physical. The model (1,1,3,2,4) gives an interesting group structure but, as subsequent calculations

show it cannot be deformed to comply with data. In the following, we will attempt to generalise

the TB mixing in order to accomodate a non-zero θ13 angle. To that end, let us now assume that

the mixing matrix C takes the general form (1.1) and put for simplicity δ = 0.

We may again construct the matrix T as before, using the new mixing matrix. As previously,

we must require that

ImTrT = 0, ReTrT = 1+2cos
2π

p
· (3.17)

The initial search for viable models was done numerically. No solutions were found for m 6= 2.

Once a potentially working model is found, it can be elaborated analytically. In what follows, we

use the previous classification in terms of the diagonal matrices Di,n,D j,m and the three integers

n,m, p .

4. Potentially viable Models

1. Case (1,1,3,2, p). For this set of integers, θ12 and θ13 are related as follows:

cosθ12 =− 2√
3

cos π
p

cosθ13

·

Computing θ12 as a function of p, we find that the only acceptable value is p = 3. In this

case, we obtain the following relations:

cosθ12 =− 2cos π
3√

3cosθ13

≡− 1√
3cosθ13

tan2θ23 =
1

2

(

sinθ13

tanθ12

− tanθ12

sinθ13

)

·

We observe that, although θ12 lies within the acceptable range, this is not the case for θ23.

Therefore, this model is rejected.

5
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2. Case (2,2,3,2, p)

Here, θ12 is given by

sin2 θ12 =
1

6cos2 θ13

(

1−2cos
2π

p

)

·

The only acceptable value is p = 3 giving

sinθ12 cos θ13 =− 1√
3

identical to (1,1,3,2, p). However, the angle θ23 differs

tan2θ23 =− 2cot 2θ13
√

3− sec2 θ13

·

3. Case (3,2,3,2, p)

The resulting formula for θ12 is identical to the one in (1,1,3,2, p)

sinθ12 =−
2cos π

p√
3cosθ13

·

Hence, as above, the only acceptable value is p = 3, leading to the constraint

sinθ12 =− 1√
3cos θ13

as in (1,1,3,2, p) and (2,2,3,2, p). For p = 3 the angle θ23 is given by

tan2θ23 =− 2cot 2θ13
√

3− sec2 θ13

·

Comparing with previous cases, we observe that for p = 3, as far as the mixing is con-

cerned, this model is identical to the second one, therefore it is compatible with data. Setting

sin θ13 = s the mixing matrix becomes

C =











√

2
3
− s2 − 1√

3
s

√
3

2
s+ 1

2

√

2
3
− s2 1√

3

1
2
s−

√
3

2

√

2
3
− s2

−
√

3
2

s+ 1
2

√

2
3
− s2 1√

3

1
2
s+

√
3

2

√

2
3
− s2











·

Since the only allowed generalization requires that n = 3, m = 2, p = 3, for the present ap-

proach, we are led to the conclusion that the only finite symmetry groups that can connect

the charged lepton and the neutrino mass matrices are either the discrete group A4 or a group

containing an A4 subgroup and possessing a 3-dimensional representation (i.e. S4). Observe

that in the adopted formalism the middle column of C remains unchanged i.e. given by the

column vector {− 1√
3
, 1√

3
, 1√

3
}T . It turns out that the so constructed generalization of the

TB mixing matrix utilizes the freedom of making linear transformations inside the degen-

erate neutrino subspace to create a non vanishing value for the θ13 angle. This subspace is

obviously orthogonal to the {− 1√
3
, 1√

3
, 1√

3
} axis.
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5. The mass spectrum

We have found two models with identical predictions with respect to the mixing. The models

differ only in the structure of the charged lepton mass matrix implying different coefficients c1,2,3

for the two cases. Namely, if the mass matrix eigenvalues are given by m1,m2,m3, and we define

∆mi j = mi −m j, the coefficient functions are given by

c2
1 =−1

8
csc2 π

n
sec

π

n

[

−2m2 cos
π

n
+m3 e

3iπ
n +m1 e−

3iπ
n

]

c2
2 =

1

4
csc2 π

n

[

cos
2π

n
(∆m12 −∆m23)− isin

2π

n
∆m13

]

c2
3 =

1

8
csc

π

n

[

csc
π

n
(∆m23 −∆m12)+ isec

π

n
∆m13

]

(5.1)

for D2,n and

c3
1 =−1

8
csc2 π

n
sec

π

n

[

−2m3 cos
π

n
+m2 e

3iπ
n +m1 e−

3iπ
n

]

c3
2 =

1

4
csc2 π

n

[

cos
2π

n
(∆m13 +∆m23)− isin

2π

n
∆m12

]

c3
3 =

1

8
csc

π

n

[

−csc
π

n
(∆m13 +∆m23)+ isec

π

n
∆m12

]

.

(5.2)

for D3,n.

The results found show that for leptons n = 3 while for neutrinos we get m = 2. The corre-

sponding coefficient functions are:

• Charged Leptons

c2
1 =

1

3
(m1 +m2 +m3)

c2
2 =

1

6
(2m2 −m1 −m3)−

i

2
√

3
(m1 −m3)

c2
3 =

1

6
(2m2 −m1 −m3)+

i

2
√

3
(m1 −m3)

(5.3)

and

c3
1 =

1

3
(m1 +m2 +m3)

c3
2 =

1

6
(2m3 −m1 −m2)−

i

2
√

3
(m1 −m2)

c3
3 =

1

6
(2m3 −m1 −m2)+

i

2
√

3
(m1 −m2)

(5.4)

• Neutrinos

For the neutrinos m = 2. The D2 and the corresponding neutrino matrices are given by:

D2 = Diagonal [−1,1,−1]

M = Diagonal [m1,m2,m3] ·
(5.5)

7
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In this case, it is clear that the neutrino mass spectrum turns out to be degenerate since D2
2 = 1

implying m1 = m3. In order to establish a breaking pattern we must write

M = d1I +d2D2 +R2

where R2 is the remainder term to be determined.

R2 =







m1 −d1 +d2 0 0

0 m1 −d1 −d2 0

0 0 m3 −d1 +d2






·

Each non vanishing element must be proportional to the same mass difference in order to have a

breaking pattern. Since

(R1)11 − (R1)33 = m1 −m3

this mass difference is m1 −m3 if no special relations between neutrino masses are assumed. So

we have

m1 −d1 +d2 = r1 (m1 −m3)

m2 −d1 −d2 = r2 (m1 −m3)

m3 −d1 +d2 = r3 (m1 −m3)

with r1 − r3 = 1. Solving for d1,d2 we get

d1 =
1

2
(m1 +m2)−

1

2
(r1 + r2)(m1 −m3)

d2 =−1

2
(m1 −m2)+

1

2
(r1 − r2)(m1 −m3)

for arbitrary r1 and r2. A different breaking pattern would require invariant relations between the

neutrino masses. For instance if we require that

m1 −d1 +d2 = r1 (m1 −m2)

m2 −d1 −d2 = r2 (m1 −m2)

m3 −d1 +d2 = r3 (m1 −m2)

consistency implies that

r3 = r1 +
m3 −m1

m1 −m2

independent of the masses i.e. m3−m1

m1−m2
= µ , and

d1 =
1

2
(m1 +m2)−

1

2
(r1 + r2) (m1 −m2)

d2 =
1

2
(r1 − r2 −1)(m1 −m2) ·

8
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6. Conclusions

In this work we have examined the structure of the lepton and neutrino mass matrices assuming

that they can be expanded as polynomials of finite group elements which act as generators. This

procedure has been proven useful for putting some order on the enormous number of possibilities

given in the literature in a systematic and mathematically consistent way since it does not involve

the mass eigenvalues. Various models are classified by means of three integer numbers which define

the group. The calculations show that the number of finite groups that can reproduce current data

by allowing a non zero value for the θ13 mixing angle is restricted. The groups allowed are either

A4 or a group containing an A4 subgroup and possessing a 3-dimensional representation (i.e.S4).

Exact group symmetry introduces a degeneracy in the neutrino spectrum which has to lifted by

means of an external breaking mechanism.
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