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Massive MIMO has become a key technology to the next wireless communication generation
for its improvement in data rate, link reliability and power consumption; however, these benefits
come at the cost of enormous data quantity, especially in the data detection of Massive MIMO
uplink.  In  this  paper,  we  propose  a  novel  matrix  inversion  to  balance  the  computational
complexity  and  performance  by  providing  selection  of  the  2-terms  Neumann  series
approximation and the LDL decomposition matrix  inversion  methods according to  different
dimensions of the channel matrix. To reduce the hardware resource for two inversion algorithms
and execute tasks efficiently, we consider the reconfigurable implementation for its flexibility
and high-power efficiency. The implementation results are given by using our Reconfigurable
Computing System for various antenna configurations. With this reconfigurable implementation,
the throughput can achieve 93.8Mb/s, 130.4Mb/s, 82.2Mb/s and 107.1Mb/s for a 14×4 ,

32×4 , 64×8  and 128× 8  system respectively, which are chose to even better
than few implementations for high dimension problems.
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1. Introduction

With the development  of  wireless  communication technology,  Multiple-Input-Multiple-
Output  (MIMO)  has  become  a  key  technology  in  most  modern  wireless  communication
standards,  such  as  3GPP LTE [1-3]  and IEEE 802.11n [4] because  it  offers  improved link
reliability,  higher spectral efficiency and data rates compared to conventional single antenna
systems  [5];  however,  since MIMO start  approaching the bottleneck,  a  novel  technology is
required to meet the ever-growing demand for higher data rates [6-7].

Massive MIMO is an emerging technology which uses a large excess of service-antennas
to  provide  more  expansive  channel  space[8].  Huge  improvements  on  throughput  and  link
reliability can benefit from Massive MIMO  [8, 9]; however, these benefits bring about some
new problems in urgent need of attention and solution, especially the significantly increased
computational complexity of data detection in the Massive MIMO uplink [8]. Since Minimum
Mean  Square  Error  (MMSE)  detection  is  the  most  prominent  low-complexity  linear
algorithm[10-11], we take it as the research object.

The remainder of the paper is organized as follows. Section 2 introduces the uplink signal
model  in  Massive  MIMO  and  its  MMSE  detection  algorithm.  Then  we  address  the
computational complexity and performance issue of two matrix inversion methods, Neumann
series approximation and LDL decomposition, which represent approximate and exact matrix
inversion respectively, and propose an approximate-exact matrix inversion selection method in
section 3. Based on this selection method, Section 4 gives the reconfigurable implementation
results  of  Neumann  series  approximation  and  LDL decomposition  on  our  Reconfigurable
Computing  System,  which  carries  out  the  calculations  with  received  array  configuration
information from the host processor so that hardware resource is saved, high-dimension cases
can  be  scaled  to  favorably  without  scale  expansion  of  hardware  and  low-complexity  in
combination with optimal-performance is achieved.

2. Massive MIMO Uplink And MMSE Detection Algorithm

2.1 Massive MIMO Uplink Signal Model

A Massive MIMO uplink can be described as a system with N receiving antennas at the
base station which receives signals from M transmitting antennas, which can be considered as
M single antenna users. The transmitted data flow is divided into M sub-bit-streams, transmitted
to receive antennas after each sub-bit-stream being encoded and mapped to constellation points.
The  receipt  signal  of  each  antennas  is  contained  in  the  received  symbol  vector

y=[ y1 , ... , y N ]
T , which is given by

y=Hx+n                   (2.1)
where x is a complex-valued vector described as x=[ x1 ,... , xM ]

T corresponding to
M transmit symbols,  H  is  the uplink channel  matrix with dimension of N×M ,  and
vector n models  the  additive  white  Gaussian  noise  with  variance σ 2

=N 0 .  We

furthermore assume that the transmission symbols satisfy E {∣xi∣
2
}=E s ,∀i .

2.2 MMSE Soft-out Detection for Massive MIMO

The task of a data detector at the base station is to compute the estimates for the encoded
sub-bit-streams given the vector y and the channel  matrix H [12].  As to  the  MMSE
detection, an estimate of the transmit vector x  is computed as

x̃=(H H
⋅H+N 0⋅E s

−1 I )−1
⋅H H y                (2.2)

Formula (2.2) mainly consists of two parts, the  M ×M Gram matrix multiplication

G=H H H (2.3)
and the inversion of regularized matrix 
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A=G+N 0 E s
−1 I M . (2.4)

3. Approximate-Exact Matrix Inversion Selection Method 

 Since  the  computational  complexity  is  mainly  caused  by A−1 ,  a  low-complexity
inversion method without sacrificing the performance is a key point. In this section, we propose
a novel method that enables the incorporation of an approximate, exacts matrix inversion, and
presents  the gist  for  selection of both methods according to various dimensions of  channel
matrix H  by analyzing the computational complexity and BER performance of Neumann
series approximation and LDL decomposition, which are typical cases of the approximation and
exact inversion respectively.

3.1 Neumann Series Approximation and LDL Decomposition

According  to  Literatures,  A−1 can  be  expressed  by  using  the  Neumann  series  as
follows:

Ãk
−1

=∑n=0

k −1
(−D−1 E)

n D−1
            (3.1)

in  which  D  is  the  main  diagonal  matrix  of  A  and  E is  the  off-diagonal
matrix[13, 14].

We take k=2 as the “2-terms Neumann series approximation” like

Ã2
−1

=D−1
−D−1 E D−1 (3.2)

which  only  requires  O(M 2) operations  in  contrary  to  O(M 3
) of  an  exact

algorithm.
In  spite  of  the  reduced complexity by virtue  of  this  approximation  method,  it  occurs

inevitable error floor when N is not large enough as M. 
    LDL decomposition is an improved version of the classic Cholesky decomposition with

less complexity.  For  this  inversion method, A can be decomposed into A=LDLH ,  in
which L  is a lower-triangular matrix with all main diagonal elements being 1. Make a middle
matrix V=LD , namely v ij=l ij⋅d j , to simplify the data organization in memory; hence,
there is

A=LV H . (3.3)
 L can be deduced column by column via expansion of Formula (3.3):

a ij=∑k =1

j
lik v jk

∗
=∑k −1

j−1
lik ( j jk d k )

∗
+l ij d j( j⩽i) (3.4)

Then we compute L−1  by L L−1
= I , namely,

l ij=∑k= j

i
lik l kj

−1
. (3.5)

Consequently,  A−1 can be computed as:

A−1
=(L−1

)
H D−1 L−1 . (3.6)

3.2 Computational Complexity and BER Performance Comparison

Next we address the computational complexity and BER performance of both methods to
make  a  comparison.  Computational  complexity  consists  of  multiplication,  addition  and
reciprocal operation. Since H is complex-valued, we convert the complex-valued operations
to  real-valued  equivalents,  concretely,  4  real  multiplications  and  2  additions  for  1  non-
conjugated  complex  multiplication,  2  real  multiplications  and  1  addition  for  1  conjugated
complex multiplication, and 2 real for 1 complex addition. 
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Neumann Approximation (k=2) LDL Decomposition
Multiplication 4M (M −1) 2M (M −1)(M −2)/3
Addition 2M2

−M 2M3
+4M /3

Reciprocal Operation M M

Table  1: Computational  Complexity  of  2-terms  Neumann  Series  Approximation  and  LDL
Decomposition

Figure 1: Complexity Comparison in Multiplication with Increasing Number of Users

Table  1  presents  the  complexity of  2-terms  Neumann  series  approximation  and  LDL
decomposition. The former has a lower complexity obviously; furthermore, with the channel
matrix scaling up, the complexity gap becomes larger and larger as shown in Fig. 1.

Then we simulate an encoded system with the modulation scheme of 64 QAM to analyze
the block error rate (BER) performance against  the signal-to-noise ratio (SNR) for the both
methods.

Fig. 2 characterizes the BER performance comparison between the two methods for M = 8
users. As to a certain M, the approximation inversion is approaching the performance of the
exact  inversion.  In  other  words,  the  ratio  of  N  and  M  is  bigger,  the  performance  of  the
approximation  inversion  will  be  better.  Even  so,  we  must  pay  attention  to  the  error  floor
incurred by the approximation inversion in case N is close to M.

Figure 2: BER Performance Comparison for M=8 users (Transmitting Antennas)

3.3 A Novel Approximate-Exact Matrix Inversion Selection Method

Based on the investigation of the computational complexity and BER performance, as we
can see, a selection of matrix inversion methods is necessary to balance the complexity and
performance of different dimension cases. Next we depict the BER performance results of the
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approximate and exact methods, for a given N / M 2 , and propose a method to estimate “a
critical value” of N / M 2  to enable the selection.

(a) N / M 2
=1

(b) N / M 2
=2

(c) N / M 2
=4

Figure 3: BER Performance Comparison for Different
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The resulting BER performance is shown in Figs. 3(a), 3(b) and 3(c) for N / M 2
=1 ,

N / M 2
=2 , N / M 2

=4 respectively.  For  a given N / M 2 ,  the approximate  inversion
for a large-scale case significantly outperforms a small-scale case, and the performance varies
with the increase of N / M 2 , similarly to the literature [15].

We propose a method to measure the performance-gap between the approximate and exact
inversion, i.e. the difference of SNRs for both methods required to achieve a certain BER. Fig. 4
characterizes this performance-gap against  N / M 2 varying from 1 to 4 for M=4, M=8, and
M=16 founding  on  48  simulation  points  for  each  M.  Every simulation  point  indicates  the
performance-gap for a certain dimension of channel matrix, and is measured at BER=, BER=,
and BER= for M=4, M=8, and M=16 separately.

Figure  4: Performance-gap  against  N / M 2  and  the  Estimated  “Critical  Value”  of
N / M 2

Figure 5: Performance of the Selection Method for M=8

It is obvious that if a point satisfies a low performance-gap for a smaller M, the bigger one
will satisfy too.. Since there is no standard for this performance-gap to achieve a certain BER in
MMSE, we give the N / M 2

=2 at 2 dB performance-gap on M=4 as the estimated “critical
value”  for  the  selection  of  the  approximate  and  exact  inversion  methods.  Fig.  5  is  the
performance of MMSE detection by using this selection method for M=8, when N / M 2

⩾2
the LDL decomposition is utilized. Conversely, the approximate method is utilized.

4. Reconfigurable Implementation Results

In recent years, various reconfigurable architectures were proposed in Literatures [9 -10].
Our  reconfigurable  system  consists  of  4  arrays  of  processing  elements  (PEs)  and  a  host
processor. The PE arrays handle parallel tasks by receiving configurable information from the
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host processor to achieve high throughput and low hardware consumption. In this case, as the
matrix multiplication has  the  advantage of  huge parallelism and two inversion methods are
required  to  implemented,  we  consider  the  reconfigurable  implementation  and  give  the
implementation results. 

Operation
Antenna 
config.

This work (approximate-exact matrix 
inversion)

 2-terms Neumann series 
approximation

freq.
(MHz)

latency
(cycles)

throughput
(M matrix/s)

max
freq.

latency
throughp
ut

Gram matrix 
multiplication

16×4

250

21 11.90

32×4 37 6.76 302.29 46 6.57

64×8 79 3.16

128×8 112 2.23 299.76 150 2

matrix inversion

16×4

250

64 3.91

32×4 46 5.43 301.57 52 5.8

64×8 146 1.71

128×8 57 4.39 285.46 55 5.18

Table 2: Implementation Results by Using Our Reconfigurable Computing System

Table 2 shows the implementation results for different antenna configurations. As 2-terms
Neumann series approximation is proposed in Literature [14], we put it as our comparison. In
Table 1, we have considered two different cases of antenna configuration for N / M 2

=1  and

N / M 2
=2 , and give the latency required to deal with one matrix. All operations are carried

out  under  a constant  clock frequency of  250MHz based on our  reconfigurable  system.  The
throughput can be generally given by 

Throuput=Frequency / Latency . (4.1)
We  can  see  that  our  implementation  of  Gram matrix  multiplication  achieves  slightly

greater throughput being 6.76 and 2.23 M matrixes/s compared with 6.57 and 2.00 M matrixes/s
in  Literature[14]  for  16×4  and  32×4 ,  64×8 and 128×8  that  of  matrix
inversion for N / M 2

=2  is close to Literature[14]. As there is rarely literature focused on the
implementation of exact matrix inversion with such high dimension problems, no comparison
can be given for N / M 2

=1 ; however, it’s obvious that the exact inversion consumes more
clock  cycles  than  the  approximate  inversion,  and  Gram matrix  multiplication  predominate
gradually in a N / M 2  system as the dimension of antenna configuration scales higher. Take
LLRs into consideration,  the  throughput  can be described as  follows according to  different
modulations, as mentioned in Literature[16],

Throuput=(M⋅Q / Latency)⋅Frequency , (4.2)
in  which  Q  indicates  the  modulation  method.  Assume  64-QAM  modulation.  The

throughput  for  a 16×4 , 32×4 ,  64×8 and  128×8  system  is  93.8Mb/s,
130.4Mb/s, 82.2Mb/s and 107.1Mb/s, respectively. The throughput of a N / M 2

=2  system
is close to Literature[2], and is better than the N / M 2

=1  systems.

5. Conclusion

In this  paper,  we firstly analyzed the computational  and BER performance of  2-terms
Neumann series approximation and LDL decomposition matrix inversion, and then provided a
method to measure their performance gap. On this basis, we proposed a novel approximate-
exact  matrix  inversion  selection  method  in  order  to  meet  the  balance  of  computational
complexity and performance. This method enables the selection of an approximate inversion
and an exact inversion according to different dimensions of antenna configurations relying on
the  proposed  “critical  point”  of N / M 2 as  estimated.  Then  we  have  implemented  this
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selection method to our Reconfigurable Computing System as to the high dimension problems,
and achieved sub-optimal results close to the literature for N / M 2

=2  situations.

References

[1] S. Sesia, I. Toufik, and M. Baker, LTE: The UMTS Long Term Evolution: From Theory to 
Practice. Wiley Online Library pp. 1-98(2009)

[2] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 
Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 
9). 3GPP Organizational Partners TS 36.212 Rev. 8.3.0 pp.1-21(May 2008).

[3] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 
Evolved Universal Terrestrial Radio Access (EUTRA); Physical Layer Procedures (Release 10). 
3GPP Organizational Partners TS 36.213 version 10.10.0 pp.1-54(Jul. 2013).

[4] IEEE Draft Standard Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 
(PHY) specifications: Amendment 4: Enhancements for Higher Throughput. P802.11n D3.00 pp.2-
4(Sep. 2007).

[5] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. New 
York, USA: Cambridge University Press pp.56-62(2008).

[6] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, 
Scaling up MIMO: Opportunities and challenges with very large arrays, arXiv preprint: 
1201.3210v1(Jan. 2012).

[7] T. L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station 
antennas, IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600(Nov. 2010).

[8] E. G. Larsson , F. Tufvesson , O. Edfors and T. L. Marzetta, Massive MIMO for next 
generationwireless systems,  IEEE Commun. Mag.,  vol. 52,  no. 2,  pp.186 -195(2014).

[9] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. C. K. Soong, J. C. Zhang, What will 5G be?,  
IEEE J. Sel. Areas Commun.,  vol. 32,  no. 6,  pp.1065 -1082(2014).

[10] R. Bouml;hnke , D. Wuuml;bben , V. Kuuml;hn and K. D. Kammeyer  Reduced complexity 
MMSE detection for BLAST architectures,  Proc. IEEE Global Telecommunications Conf., San 
Francisco, CA, USA,  vol. 4,  pp.2258 -2262(2003).

[11] E.G. Larsson, MIMO detection methods: How they work [lecture notes]. IEEE Signal Process. 
Mag., vol.26, no. 3  pp. 91-95(2009).

[12] B. M. Hochwald and S. ten Brink, Achieving near-capacity on a multiple-antenna channel, IEEE
Trans. Commun., vol. 51, no. 3, pp. 389–399(2003). 

[13] G.W. Stewart, Matrix Algorithms, Vol. 1: Basic Decompositions. Society for Industrial and 
Applied Mathematics (SIAM), pp.63-82(1998). 

[14] M. Wu, B. Yin, A. Vosoughi, C. Studer, J. R. Cavallaro, and C. Dick, Approximate matrix 
inversion for high-throughput data detection in the large-scale MIMO uplink, in Proc. IEEE ISCAS,
Beijing, China, pp. 2155–2158(May 2013)

[15] B. Yin, M. Wu, C. Studer, J. R. Cavallaro, and C. Dick, Implementation trade-offs for linear 
detection in large-scale MIMO systems, in Proc. IEEE ICASSP, Vancouver, BC, pp. 2679–
2683(May 2013).

[16] . C. Studer, S. Fateh, and D. Seethaler, ASIC implementation of soft-input soft-output MIMO 
detection using MMSE parallel interference cancellation, IEEE J.Solid-State Circuits, vol. 46, no. 7,
pp. 1754–1765(Jul.2011).

8


	Massive MIMO has become a key technology to the next wireless communication generation for its improvement in data rate, link reliability and power consumption; however, these benefits come at the cost of enormous data quantity, especially in the data detection of Massive MIMO uplink. In this paper, we propose a novel matrix inversion to balance the computational complexity and performance by providing selection of the 2-terms Neumann series approximation and the LDL decomposition matrix inversion methods according to different dimensions of the channel matrix. To reduce the hardware resource for two inversion algorithms and execute tasks efficiently, we consider the reconfigurable implementation for its flexibility and high-power efficiency. The implementation results are given by using our Reconfigurable Computing System for various antenna configurations. With this reconfigurable implementation, the throughput can achieve 93.8Mb/s, 130.4Mb/s, 82.2Mb/s and 107.1Mb/s for a,, and system respectively, which are chose to even better than few implementations for high dimension problems.
	1. Introduction
	2. Massive MIMO Uplink And MMSE Detection Algorithm
	2.1 Massive MIMO Uplink Signal Model
	2.2 MMSE Soft-out Detection for Massive MIMO
	3. Approximate-Exact Matrix Inversion Selection Method
	3.1 Neumann Series Approximation and LDL Decomposition
	3.2 Computational Complexity and BER Performance Comparison
	3.3 A Novel Approximate-Exact Matrix Inversion Selection Method
	4. Reconfigurable Implementation Results
	5. Conclusion

