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This paper presents a high capacity reversible watermarking scheme for 2D vector maps. This
scheme applies an integer transform to a coordinate pair. The integer transform does not change
the sum value of the coordinate pair and embeds one watermark bit. Except the first and the last
one,  each  coordinate  in  an  object  with  its  previous  and  next  one  will  compose  two  pairs
respectively. Namely, each coordinate can embed one watermark bit. A threshold on difference
values is predefined to distinguish the embedded pairs. As to one pair, if its absolute value of the
difference  is  less  than  the  threshold,  the  integer  transform will  be  applied;  otherwise,  it  is
shifted.  The  shifted  distance  is  larger  than  the  embedded  one  so  that  the  decoder  can
differentiate the two classes. To assure the distortion introduced by the transform and the shift
less than the map precision distortion, the embedding condition is presented. Simulation results
are  provided  to  show  that  the  scheme  can  achieve  high  capacity  while  maintaining  low
distortion value.
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1. Introduction

Nowadays,  the  information  security  and  the  copyright  protection  have  become
increasingly important. In particular, the acquisition and management of 2D vector map data
requires great human, material and financial resources. It would be desirable to have a technique
to protect the copyright and the content integrity. Digital watermarking is one of the widely used
techniques  adopted worldwide in  the  area of information security because it  hides invisible
information in the cover data and most of them modify the the covered data permanently. In
some  critical  cases,  2D  vector  maps  can  not  tolerate  any  distortions;  thus  the  reversible
watermarking,  which  can  recover  the  original  data  after  extracting  the  watermark  data,  is
suitable for the critical applications.

There have been fewer reversible watermarking methods for 2D vector maps. The first
algorithm in this literature, which was proposed by Voigt et al., modified the highest frequency
DCT coefficient to modulate one watermark bit[1]. Shao et al. and Wang et al. employed Tian’s
difference expansion in 2D vector maps and embedded the watermark data by expanding the
differences between two neighbouring coordinates[2, 3, 4]. In order to control the distortion,
they presented the embedding condition such differences. They used the location map to record
the expansion locations like Tian’s algorithm  based on difference expansion[4]. The location
map consumed large part of the embedding capacity. Zhou’s  and Wu’s algorithms  are also
based on the difference expansion[5, 6], but the difference histogram shifting technique took the
place of location map to distinguish the expanded locations; as a result,  the two algorithms
increased the capacity. Zhou controlled the capacity by the difference histogram[5].

The algorithms  hided data in disjoints pairs. And thus they did not take full advantage of
the coordinates[2, 5, 6]; moreover, like Tian’s method, these algorithms performed three steps to
embed the watermark. To solve the first problem, the proposed scheme consecutively operates
every  coordinate  value  except  the  last  one.  Hence,  more  embedding  space  is  achieved.
According, the capacity has been increased largely. To solve the second problem, the proposed
scheme applied an integer transform  on the original coordinate values to embed one watermark
bit and calculate the marked coordinate values[7, 8]. The computational complexity has been
greatly reduced. The invariability of sum of the coordinate value features the integer transform
and it is the key to restore the original data. To control the distortion, not all the coordinate pairs
are  embedded  with  some  shifted.  Whether  the  embedding  or  the  shifting  depends  on  the
threshold which is pre-set. The shift distance is larger than the majority of all the embedded
distances. Thus, the embedded differences and the shifted ones lie in different ranges, by which
the decoder can distinguish them. What’s more, the paper presents the embedding condition in
order so that the distortion is less than or equal to the map precision tolerance.

Next, we introduce the integer transform in Section 2. This is followed by the detailed
description  of  the  proposed  scheme  in  Section  3.  Next  come  experimental  results  and  the
comparison with other schemes in Section 4. Finally, we draw a conclusion in Section 5.

2. The Integer Transform

This Section provides a brief view of the integer transform[8]. In 2D vector maps, two
neighboring points constitute one pair . Each point contains two coordinates, X and Y.
Thus we obtain two coordinate pairs. The X coordinate pair is , and the Y . Both
pairs can hide watermark data in the same way. Then we take X coordinate for instance. We
denote the watermark bit as . Firstly, we calculate the difference and the sum as

                                (2.1)

Then we apply the integer transform on the coordinate pair to hide one watermark bit as

                                 (2.2)
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From Equation (2.2), we calculate

                                                                         (2.3)

The transform does not change the sum of the coordinate values. Then we explore the
parities of the sum and the difference. We denote the parity of a number  is . If  is
even,  the  function  returns ,  otherwise  it  returns .  Since   is  an  even  number  and

 ,  .  Likewise,  .
Because of (2.3), we have

                                                         (2.4)

The invariant parity of the differences is the key to recover the original vector map.
Now we  describe  how to  extract  the  watermark  bit  and  restore  the  original  data.  By

Equations  (2.1)  and  (2.2),  the  original  difference  between   is  .
Because of  and Equation (2.4), we can calculate by as

                                                               (2.5)

Since  have the same parity, the watermark  can be deduced as

                             (2.6)

By Equation (2.5) and  , we can calculate the original difference  . By (2.3),  we can
calculate the original sum . Then the original coordinate values can be restored as

                                                 (2.7)

3. The Proposed Scheme

Upon embedding, new differences and unchanged differences will overlap. To solve the
problem, the un-embedding coordinate values will be shifted. Whether the embedding or the
shifting depends on a threshold , which is determined in turn by the embedding capacity and
the distortion. Then we can embed the watermark and in the decoder we extract the hidden
information and recover the original data. One of the key steps is pairing the coordinates.

Instead  of  grouping  the  coordinate  values  into  disjoint  pairs  before  embedding  and
extracting in algorithms , we pair the coordinate values jointly on embedding and extracting.
Suppose we have   coordinate values   and   is even. In the methods, the
coordinate values are grouped into pairs . We operate them from 
to   as follows.  Like the disjoint  pair,  the first  original  and operated pair  are   and

 respectively.  But the following pairs are different.  The next pair is composed of the
operated coordinate value  and the original coordinate value . We denote it as  after
being operated. The others are operated as above and then all the coordinate values become

. Clearly, we can hide  bits at most while  in disjoint pairs.

3.1 Coordinate Value Shifting

We preset a threshold  to determine embedding and shifting. If the difference meets the
condition , we embed the watermark in this pair and classify it into the set . Clearly,
the range of the original differences  is . After embedding, the new difference  
will  fall  into the range  ;  otherwise, i.e.  ,  we shift  the coordinate
values  and  classify  it  into  the  set  .  Obviously,  its  original  range   is

. The range of the embedded differences  and the range of the
un-embedded differences   will  overlap so as not to distinguish them in the decoder. To
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solve the problem, we shift the un-embedded coordinate values. The shifting displacement is
denoted as  ,  which is a positive integer. After shifting, the differences   must  meet  the
condition  or .

If   in  set   is  positive,  i.e.  ,  the  shifting  is  defined  as   and
. The new difference is  . That is  . So   must meet the

condition . If  in set  is negative, i.e. , we define the shifting as
 and  .  After  shifting,  the  difference  is  .  Then we  get  the

inequality  .  Thus   must  satisfy the condition  .  We take the
minimum values of  to minimize the distortion.

The shifting for the pairs in set  is

                                          (3.1)

where  the  function   returns  1,  0  and  -1  when   is  positive,  zero,  negative,
respectively. After shifting, the differences occupy the range . The
decoder can distinguish the embedded pairs from the shifted ones by their difference ranges.
What’s more, the decoder can easily recover the original data in set  as

                           (3.2)

3.2 Embedding Condition

Whether the embedding or the shifting will introduce distortion to the original data. The
distortion should less than or equal to the map’s precision tolerance. From the above description,
in one object, the first coordinate value and the last one are operated once with the others twice.
We firstly descript the second case. The two operations are as Table 1.

At the same time, four calculations on the coordinate values are listed in Table 2, where 
is a negative number and  is a positive number.

First operation Second operation
Embedding Embedding
Embedding Shifting
Shifting Embedding
Shifting Shifting

Table 1: The Two Operations

Case First calculation Second calculation
a

b

c

d

Table 2 :The four Calculations

In cases a) and d), the second calculation offsets the first one to some extent. Cases b) and
c)  will  introduce  the  greatest  modification.  Thus  we  analyze  the  two  cases;  besides,  the
modifications by two calculations are greater than one calculation. In summary,  the greatest
modification must be introduced by the two cases.

 and  are different in terms of embedding and shifting. If we embed the watermark as
Equation (2), the smallest and greatest modifications occur when   and  , and  
and  ,  respectively.  We  take  the  greatest  modification  into  consideration.  It  is
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, where  denotes the modification in case of embedding. On the other hand, if
we shift  the  coordinate  values  as  Equation (3.1),  there  will  be  only two modifications,  i.e.

 and  ,  where   is the  modification when shifting.  Clearly,
. Then the greatest modification when operating twice which is denoted as   is

.  should be less than or equal to . That is .
Then we obtain the embedding condition on the threshold as

                                                          (3.3)

If   takes the maximum value,  we will  obtain the  greatest capacity.  If we embed less
information,  will take smaller value and thus the distortion will be decreased.

3.3 Embedding and Extracting Processes

In a vector map, we embed the watermark bits in the polylines and polygones one by one.
And in each object, the coordinate values one by one are operated. The embedding progress is
shown as follows.

The neighboring coordinate values constitute a pair , where  and 
is the total number of the vertices in an object. The left coordinate value in a pair is already
operated except for the first coordinate value .

We calculate the difference of the pair by Equation (2.1) and denote it as .
If , we embed one watermark bit in this pair by Equation (2.2). Otherwise, the

two coordinate values are shifted as Equation (3.1).
We increase  by one and repeat Step 1-4 till we embed all the watermark bits.
Unlike the embedding process,  the extracting process proceeds in the inverse order.  It

consists of four steps.
The neighboring coordinate values make up of a pair , where  and

 is the total number of the vertices in an object. The left coordinate value in a pair is operated
twice except for the first coordinate value  which is operated once. 

We calculate the difference and the sum values of the pair by Equation (2.1), which are
denoted as  and  respectively.

If  ,  we  deduce  the  watermark  bit   and  calculate  the  original
difference   by Equations (2.5) and (2.6). Then we calculate the original values by Equation
(2.7). Otherwise, we recover the original values as Equation (3.1).

We decrease  by one, and repeat Step 1-4 till we extract the watermark bits and recover
the original values. Note that the extracted bits are also in the reverse order.

4. Experimental Results

We test  our  method and compare it  with Shao’s  and Zhou’s   methods.  The tests  are
performed  on  two  maps,  namely  a  river  map  and  a  contour  map[2,  5].  There  scales  are
1:4000000 and 1:10000 respectively.  Other parameters are shown in Table 1.3. The original
river map is reduced 100 times as shown in fig. 1(a). Note that the dashed box is marked by
authors. Fig. 1 (b) is reduced by 10 times as to one part of the original map. One part of the
original contour map is magnified by 10000 times as shown in Fig 2.

 
                       (a) The River Map    (b) One Part of the Original River Map

Figure 1: Original River Map
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Figure 2: Original Contour Map

Map Scale Number of vertices Map’s tolerance precision (meter) Decimal digits
River 1:4000000 137554 500 6
Contour 1:10000 176526 6 7

Table 3: Parameters of Original Maps

We embed the watermark bits in X and Y coordinate values. And the watermark bits are
generated  randomly.  We  experiment  the  distortions  at  different  capacities  including  the
maximum capacity. Fig. 3 is the marked river map at the maximum capacity  with

. Fig. 4 is a part of the marked contour map at the maximum capacity 
with . We use  (bit per coordinate value) to measure the capacity and 
to calculate the distortion. The results are shown in Figs. 1.5 and 1.6. Compared to Shao’s and
Zhou’s methods, our method has achieved higher capacity at the same RMSE and introduce
lower distortion at the same capacity[2, 5]. 

 
                          (a) The Marked River Map          (b) One Part of the Marked River Map

Figure 3: The Marked River Map

Figure 4: The Marked Contour Map
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Figure 5: Capacity vs. Distortion Comparison on "River"

Figure 6: Capacity vs. Distortion Comparison on "Contour"

5. Conclusion

We propose a reversible watermarking method for 2D vector maps.  All the coordinate
values but two are embedded or shifted twice. Then we obtain higher embedding space; besides,
two operations can decrease the distortion at some cases. By the threshold, we embed in a pair
or  shift  the  coordinate  values.  The  two  operations  will  make  their  differences  to  fall  into
different ranges. Thus the decoder can distinguish the embedded pairs from the shifted pairs and
recover the original data. Experimental results show that our method can achieve high capacity
at low distortion. Experimental results indicate the method will increase the capacity.
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