
P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources
with Time Constraint

Caihong Bao12

College of Further Education, Qujing Normal University, Qujing, 655011, China
E-mail: 752551340@qq.com

The ever-growing demand of cloud resources places the resource management at the heart of the
design and decision-making processes in the cloud computing environment. A new allocation
model: Balancing Fairness and Efficiency with Bottleneck-Aware Allocation(BAA) has found
sound appropriate balance between fairness to the clients and utilization maximization of the
system. We study the problems of BAA and improve BAA to design a new mechanism which is
Bottleneck-Aware Allocation with time constraint. BAA with time constraint allows that users
can join the system at any time and satisfies the sharing incentive(SI), envy freness(EF), pareto
efficiency(PE) and Strategy-proofness (SP). An approximation algorithm is hereby presented
that can efficiently compute a near-optimal profit schedule which time complexity is o(n). It can
achieve good resource utilization based on the greedy. We believe that our work informs the
design of superior multiusers system while expanding the scope of fair division theory by
initiating the dynamic study and the fair resource allocation mechanism.

CENet2015
12-13 September 2015
Shanghai, China

1Speaker
2The work was supported by Chinese Natural Science Foundation Grant No. 11361048.

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

1. Introduction

The cloud computing paradigm offers users rapid access to the computing resources such as
CPU, memory and storage with minimal management overhead. The recent commercial cloud
platforms, exemplified by Amazon EC2[1], Microsoft Azure and Linode[2], organize a shared
resource pool for serving their users. The emergence of cloud system as a common computation
resource gives rise to plenty of optimization problems. The elastic and on-demand nature of
cloud computing is to assist cloud users in meeting their dynamic and fluctuating demands with
the minimal management overhead.

The resource allocation is a key building block of any shared computer system. Current
production resource management and scheduling systems often use some mechanisms to
guarantee fair sharing of computational resources among different users of the system. One of the
most popular allocation policies proposed so far has been the max-min fairness [3], which can
maximize the minimum allocation received by a user in the system. Assume that each user has an
equal share of the resources. Dominant Resource Fairness(DRF) [3] suggests performing the
max-min fair share algorithm over so called dominant user’s share, which is the maximum share
that a user has been allocated of any resource. Simultaneous and fair allocation of multiple
continuously divisible resources called as the bottleneck-based fairness(BBF) is proposed [4]. A
new model called Bottleneck Aware Allocation (BAA) based on the notion of local bottleneck
sets to maximize the system utilization while providing fairness in the allocations of the
competing clients [5]. The model provides clients that are bottlenecked on the same device with
allocations that are proportional to their fair shares, while allowing allocation ratios between
clients in different bottleneck sets to be set by the allocator to maximize the utilization [6]. In
addition, all these approaches assume that all jobs and/or resources are continuously divisible.

2 Bottleneck-aware Allocation

The main goal of DRF is to make the maximum number of users to run the tas in a fair
situation, which ignores the utilization of resources; and the system resource utilization might
appear anomaly. DRF and BBA are not satisfied with SP. We propose a new design of BAA with
time constraint for improving the utilization based on BBA. It meets the SP properties and make
maximum utilization of the system resources. The thought of bottleneck allocation lies in the
users to get the same resources who have the same bottleneck resources type. Strategy-proofness
(SP) is an important property that the users should not be able to get benefit by lying about their
resource demands; however, the current allocation mechanism rarely satisfies this property
according to our research. We used to make the Bottleneck-Aware allocation to meet the SP. We
assume there are two users),(21 uuU  and system resources)100()(1  cC . The resources
allocation are),(11

21
tt AAA )60,40( at time 1t . 2u shares resources more than 1u at time 1t . When

1u needs more resources at time 2t , 1u can get more resources than 2u (),(21
21
tt AAA )40,60().

2.1 Basic Setting

(1)),,,(21 kuuuU  the set of users.),,,(21 krrrR  : resources types. We define a variety of
resources which types are not limited.),,,(21 ncccC  resource constraints which it is resource
systems

(2) For every user i , we normalize the resource demand vector to id , where ird is the fraction
of resource r required by each task of user i over the entire system. For the sake of simplicity, we
assume the positive demands for all users, 0ird , Ui , Rr . We assume the system have two

resource types, CPU and Memory; therefore,
21

1

ii

i
i dd

d
m


 and

21

2

ii

i
i dd

d
h


 .

(3) Let ix be the number of tasks processed on the server for the user i .

2

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

(4) Let t
iA denote the allocation of client i at time t under some resource partitioning. The

total throughput of the system is dtAAA
i

t t
i

i
i  

0 . User Ui shares resources of CPU and

Memory are i
t
i mA  and i

t
i hA  at time t.

(5) The load of a client i on the Memory is ih and on the CPU is im . Partition the clients

into two sets S and D based on their hit ratios. D and S is the set of users who have the same
bottleneck resource CPU for Di and Memory for Sj .

For now, we assume that the users have infinite number of tasks to be scheduled. Infinite
users join the system at different times.

For example, we assume U =(4321 ,,, uuuu) , R =(21,rr)),(MemoryCPU . The resources of

the system are)200 ,100(),(21  ccC , we have),,,(4321 mmmmm )9.0 ,7.0 ,4.0 ,2.0(and

)1.0 ,3.0 ,6.0 ,8.0(),,,(4321  hhhhh . In this case, 33.0
200100

100



balh , thus Duuu 321 ,, and Su 1 .

2.2 Bottleneck-aware Policy

(1) Fairness between clients in :
 kDji  , , djjii pmAmA  . (2.1)

Because the users belong to the same set, they have the same dominant/bottleneck resource
type. Our goal is that the users who have the same set shared dominant/bottleneck resources are
no less than the other users from the equity considerations. The dominant/bottleneck resource
type of users in the set D is CPU.

(2) Fairness between clients in S :
kDji  , , sjjii phAhA  . (2.2)

The dominant/bottleneck resource type of users in the set S is Memory.
(2.3)Fairness between a client in D and a client in S : the dominant/bottleneck resource

type of users in the set D is CPU, and users in S is Memory. Allocation mechanism to make the
share resources CPU of users in set D are greater than the in set S, and the memory of users in set
S are greater than in set D in (2.3)(2.4).

 Di , Sj , jjii mAmA  . (2.3)
 Di , Sj , iijj hAhA  . (2.4)

2.3 Bottleneck-aware Allocation with Time Constraint

We joined the constraints of time in BAA. If the current user shares the resources are low,
the system will give priority to allocate resources to this user so as to ensure fairness without any
starvation phenomenon.

There are many algorithms objective functions, such as the maximum utilization of the
system resources, the maximum total number of tasks and the minimum number of tasks of each
user. In this paper, we set the objective function for maximum resource utilization per unit time
in (2.5).

 Maximize 
i

i

t

A
. (2.5)

 Subject to

Dji  , , dtpmdtAmdtA
t

dj

t t
ji

t t
i  

0

0

0
. (2.6)

 Sji  , , dtphdtAhdtA
t

sj

t t
ji

t t
i  

0

0

0
. (2.7)

 Di , Sj , j

t t
ji

t t
i mdtAmdtA  

0

0
. (2.8)

Di , Sj , j

t t
ji

t t
i hdtAhdtA  

0

0
. (2.9)

 CPUi
Ui

i CmA 


. (2.10)

3

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

 Memoryi
Ui

i ChA 


. (2.11)

Theorem1. dtpmdtA
t

di

t t
i  

0

0
 and dtphdtA

t

si

t t
i  

0

0
 to satisfy (2.6) and (2.7).

Proof. We have dtpmdtAmdtA
t

dj

t t
ji

t t
i  

0

0

0
 for Dji , .according to (2.6). We have

j

t t
ji

t t
i mdtAmdtA  

0

0
, and i

t t
ij

t t
j mdtAmdtA  

0

0
 for Dj ,. (2.12)

so we have dtpmdtAmdtA
t

dj

t t
ji

t t
i  

0

0

0
 for Dji , . We can also get:

dtphdtAhdtA
t

sj

t t
ji

t t
i  

0

0

0
, Sji , . (2.13)

We obtain the following constraint.

 dtpmdtA
t

di

t t
i  

0

0
, Di . (2.14)

 dtphdtA
t

si

t t
i  

0

0
, Si . (2.15)

Theorem 2.)max(isd App  to satisfy (2.8)(2.9).
Proof. We have

jjii mAmA  )1(jjij hAmA   jjjii AhAmA 

 jsd App  for Di , Sj . (2.16)

according to (12)(13).
jjii hAhA   jjii hAmA )1( ijjii AhAmA 

 isd App  for Di , Sj . (2.17)

 according to (2.12) and (2.13); so we have)max(isd App  to satisfy (2.8) and (2.9).
)max(isd App  . (2.18)

)max(

0

0

0
dtAdtpdtp

t t
i

t

s

t

d   . (2.19)

Theorem 3. The incremental value of dp or sp is

)
1)1(

max(




i

isd

m

App
tmp or)

1)1(
max(




i

isd

h

App
. (2.20)

Proof. If tmppp dd  , Di .
)max(isd App  )max(isd Aptmpp  )max(iisd mtmpAptmpp 

 sdii ppAmtmp )11()
)11(

max(




i

isd

m

App
tmp .

If tmppp ss  , Si , we have)max(isd App  )max(isd Aptmpp  

)
)11(

max(




i

isd

h

App
tmp .



















Sj

h

App

Di
m

App

tmp

i

isd

i

isd

),
)11(

max(

),
)11(

max(

 (2.21)

 



Di i

i

m

h
M , 




Si i

i

h

m
H . (2.22)

Theorem 4. The objective function HpMpppAE
Si

s
Di

ds
Ui

d
Ui

i  


)(..

Proof.)()(
i

i

Si
ss

i

i
d

Di
d

Si
i

Di
i

Ui
i h

m
pp

m

h
ppAAAE  



i

i

Si
s

i

i

Ui Di
dsd h

m
p

m

h
ppp   

 

)(HpMppp
Si

s
Ui Di

dsd   
 

)(.

We propose an online approximation algorithm to solve BBA with the time allocation
problem. We use a greedy strategy to maximize the resource utilization per unit of time. We have

4

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

HpMpppE
Di Si

sds
Ui

d   
 

)(to maximum (2.5) according to Theorem 3. If HM  , we

increase the value of dp priority, whereas the increase in the value of sp . Algorithm 1 is the

online approximation algorithm, which is waiting for new users to join the system, and then in
turn calls Algorithm 2 and 3. Algorithm 2 is to allocate resources to the new user and the other

users who share the bottleneck resources. The algorithm did not achieve dp or sp . The

complexity of the algorithm is o(n).
ALGORITHM1 BAA with Time Online Approximation Allocation
Input:),,,(21 nuuuU  ,),(21 ccC  , resources CPU and Memory of the system

1: wait new user iu arrives the system

2: Add iu to the set of D or S based on her bottleneck resources

3: Algorithm2
4: Algorithm3
5: goto 1

ALGORITHM2 Set iA value

1: if Dui 

2:),min(c
m

p
A

i

d
i  //c is the remaining resources in system.

3: if Sui 

4:),min(c
h

p
A

i

s
i 

5: for ju in U

6: if Du j and dii pmA 

7:),min(c
m

mAp
AA

i

iid
ii




8: else if Su j  and sii phA 

9:),min(c
h

hAp
AA

i

iis
ii




10: end for

ALGORITHM3 Set dp or sp value

1: for iu in D

2:
i

i

m

h
MM 

3: for iu in S

4:
i

i

h

m
HH 

5: int k=0
6: while c>0 // c is remaining resources in the system.
7: if HM  or 0K
8: compute tmp value

9: tmppp dd 
10: k=k+1
11: End if
12: if HM  or 0K

5

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

13: compute tmp value
14: tmppp ss 
15: k=k+1
16: End if
17: End while

3. Fairness Properties

The important and desirable properties of a fairness are shown as below:
(1) Sharing incentive(SI)[3]. Each user should be better off sharing the cluster. Each user

should not be allocated more tasks in a cluster partition consisting of n
1 of all resources. Each

user shall get at least the throughput he/she would get from the statically partitioned resource
equally among them. This throughput will be referred to as the fair share of the user. In this
paper, we will use fair share defined by equal partition of the resources

Dji  , , jjii mAmA  and Sji  , , jjii hAhA  . (3.1)
(2) Envy-freeness(EF) [3]. A client cannot increase its throughput by swapping its

allocation with any other client, that is, users prefer their own allocation over the allocation of
any other user.

(3) Pareto efficiency(PE) [3]. It should not be possible to increase the allocation of a user
without decreasing the allocation of at least another user. This property is important as it
maximize the system utilization to satisfy other properties.

(4) Strategy-proofness (SP) [3]. Users should not be able to get benefited by lying about
their resource demands. It provides incentive compatibility, as a user that cannot improve his/her
allocation by lying. In this paper, we will use the proofness defined by users should not be able to
get benefited by lying in the long time.

Theorem 5. BAA with time satisfies the SI property
Proof. We have

dtpmdtAmdtA
t

dj

t t
ji

t t
i  

0

0

0
, Dji  , . (3.2)

and

dtphdtAhdtA
t

sj

t t
ji

t t
i  

0

0

0
, Sji  , . (3.3)

according to (2.6), (2.7), (2.14) and (2.15).
Theorem 6. BAA with time satisfies the EF property

Proof. If user iu envies the user ju , they will be the same to set D or S. If Duu ji , , we

have j

t t
ji

t t
i mdtAmdtA  

0

0
. The system will priority allocate resources to the user iu according to

the algorithm. If and only if j

t t
ji

t t
i mdtAmdtA  

22

0

0
, the system will allocate resources to ju , thus

iu will not envy ju in the end.

Theorem 7. BAA with time satisfying the PE property
Proof. We assume the system have resources c to increase the allocation of a user without

decreasing the allocation of at least another user. So Uui  , cAA ii  , cc  . We have





Ui

i
Ui

i AcA . It contradicts with (2.5).

Theorem 7. BAA with time satisfying the SP property

Proof. If the user iu gets resources ii AA  by deception for Di . So Uj , jj AA  ,

we have jjii mAmA  or jjii jAhA  . The system will priority allocate resources to the user

ju . If and only if jjii mAmA  or jjii jAhA  , the system will allocate resources to iu . If

the system will not allocate resources to in (21 , tt), the user will not get benefited by deception
for the long time.

6

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

4. Experimental Results

We perform extensive experiments in order to investigate properties of the proposed
algorithms. BAA with time constraint guarantees the users who have the same set to have the
same dominant resource type, so we use the efficiency of system resources to analyze the
performance of the algorithm. To analyze the performance, we present real data in experiments.
We assume that each user brings the user 1/n of resources to join the system. As our data we use
to trace the real workloads on a Google compute cell, for seven hours in [6]. The workloads
consists of tasks, each of which runs on a single machine, consumes memory and one or more
cores; the demands fit our model with two resources. For various values of n, we sampled n
random positive demand vectors from the traces and analyzed the value of the three objective
functions.

For the sake of convenience, we assumed each user joined to the system one by one. We
selected n=1000 users to add system. Each user submitted the computing jobs, divided into a
number of tasks with each requiring a set of resources. The experimental platform environment
was using C# in Visual studio 2013.

The dominant resources of users in D is CPU and the users of S is Memory. The CPU
resource usage of D is higher than S and the memory resource usage of S is higher than D
according to (2.8) and (2.9). Fig.1 shows the CPU and memory utilization. BAA with time often
ensures the utilization of two resources close to 100%. Fig. 2 shows the ratio of CPU utilization
and Fig. 3 shows the ratio of Memory utilization. The blue line is the set of D and the yellow line
is the set of S. From the Fig. 2 and Fig. 3, we can see that the CPU resource usage of D is higher
than S and the memory resource usage of S is higher than the D.

Figure 1: CPU and Memory Utilization

7

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

Figure 2: Ratio of CPU Utilization

Figure 3: Ratio of Memory Utilization

5. Conclusion and Future Work

In this paper, we design a new mechanism, the Bottleneck-Aware Allocation with time
constraint. BAA with time constraint allows that the users can join the system at any time and
satisfy the constrained sharing SI, EF, PE and SP. An approximation algorithm was presented that
can efficiently compute a near-optimal profit schedule. This algorithm computationally scales
very well as the number of users grow and the resource utilization close to the offline algorithms
There are several challenges that we need to address in order to complete the research. Firstly, we
did not take into account the number of tasks. When allocating the same bottleneck resource to
each user, the number of tasks to run is different. Secondly, the system allocates resources to each
user which cannot guarantee the users can run the integer number of tasks. When the excess
resources cannot run a task, the waste resources will exist. Thirdly, we assume that the task
resources submitted by the users do not change, which is not satisfied with the actual situation.
We plan to further analyze the performance and suitability of the production solution as well as
possible problems that many appear in the future. As for future work, we use this allocation
mechanism in the real system (e.g., Hadoop, yarn).

References

[1] M.ambrust, A. Fox. Above the Clouds: A Berkeley View of Cloud Computing[EB/OL].(2011-01-25).
http://www.eecs.berkeley.edu/pubs/ techrpts /2009/EECS-2009-28. pdf.

8

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
4

Bottleneck-aware Allocation of Multiple Resources with Time Constraint Caihong Bao

[2] L.Kash, D.Ariel. No Agent Left Behind: Dynamic Fair Division of Multiple Resources[J]. Journal of
Articial Intelligence Research. 51(2):579-603(2014)

[3] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski., Dominant resource fairness: air allocation of
multiple resource types[J]. In Proceedings of the USENIX Conference on Networked Systems
Design and Implementation. 23 (1):24-28(2011)

[4] M. Isard, M. Budiu, A. Birrell, D. Fetterly. distributed data-parallel programs from sequential
building blocks[J]. Engineering Analysis. 32(1): 67–75(2007)

[5] H. Wang, P. J. Varman. Balancing Fairness and Efficiency in Tiered Storage System with
Bottleneck-Aware Allocation[J]. In Proceedings of the USENIX Conference on File and Storage
Technologies. ,12 (4):229-242(2014)

[6] M.Isard, V. Prabhakaran, J. Currey, U. Wieder. Fair Scheduling for Distributed Computing
Clusters[J]. Storage Technologies. 16(2):261-276(2009)

9

	1. Introduction
	2 Bottleneck-aware Allocation
	4. Experimental Results
	5. Conclusion and Future Work
	References

