
P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
6
0

An Improved Job Scheduling Algorithm Based on
the First Distribution and Redistribution Strategy for
Grid Computing

Tianwei Ni1 2

Department of Electronics and Information Engineering
Hohai University Wentian College, Maanshan 243031 Anhui China
E-mail: tianwei5689@126.com

Baolin Zheng
Department of Information Engineering
Henan vocational and technical college, 450046 Zhengzhou China
E-mail:‍zhengbaolin_2001@163.com

Jinzhu Lin
Department of Electronics and Information Engineering
Hohai University Wentian College, Maanshan 243031 Anhui China
E-mail: jinzhu5689@126.com

As the traditional job scheduling algorithms ignore the impact of resource fragmentation, there
are some insufficiencies in terms of the job execution time for grid computing. Since deficiency
occurs to these traditional job scheduling algorithms , why not reduce the resource
fragmentation probability by the way of combining backfilling with the priority scheduling
strategy? If it should be, how to be regulated? This paper argues that the treatment of resource
recovery should be the solution to a considerable resource fragmentation problem. We present
an improved job scheduling algorithm which optimizes the traditional grid scheduling
algorithms based on the first distribution and the redistribution strategy of jobs. The algorithm
considers the resource recycling so specifically that it can distribute the job efficiently.
Simulation experiment results demonstrate that the improved job scheduling algorithm can
greatly improve the resource utilization rate; at meanwhile, it can also track the system
throughput rate with excellent performance.

CENet2015
12-13 September 2015
Shanghai, China

1Speaker
2Corresponding Author

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/
mailto:%E2%80%8Dzhengbaolin_2001@163.com

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
6
0

An Improved Job Scheduling Tianwei Ni

1. Introduction

Job scheduling is not only an essential function to the grid computing, but also a key factor
of improving the system performance and system efficiency in the grid computing. It is
necessary to achieve an effective job scheduling algorithm in order to improve the resource
utilization. The traditional grid job scheduling algorithms such as Suffrage-C [1], Min-min [2],
Max-min [3] and WQ [4] etc. can set the job priority automatically. Once an idle resource is
found, the high priority assignment will be submitted automatically and running. If we ensure
normal operation of these algorithms, we have to provide detailed information in respect of the
job and the processor. In fact, it is unpossible to get the detailed information; therefore, it
reduces the system response time, etc. In order to better match suitable resources for job, this
paper presents an improved job scheduling algorithm, which uses the first distribution and
redistribution strategy in the grid environment while not requiring detailed processor
information and job information.

The paper is organized as follows: firstly, the introduction is made to the design of the
system scheduling model in Section 2; secondly, Section 3 presents an improved algorithm
based on the first distribution and redistribution strategy concretely; thirdly, in Section4, our
experiments are discussed. In the end, Section 5 concludes the paper and gives a look to the
future trends.

2. System Scheduling Model

In the grid computing, one resource could meet the needs of multiple jobs and one job can
be matched by multiple resources. As shown in Fig. 1, the size of a job refers to the number of
instructions contained within this job; and the processing capacity of a processor refers to the
processor capable of handling the number of instructions in an unit time. The grid scheduler
shall arrange these jobs as assigned to the distributed by the processors under certain criteria [5].
The grid scheduler is to choose a job waiting to be assigned to a processor according to the job
size. Once the resource is adequate to meet the needs of the job, the job will run promptly.

Figure 1: Surjection from Job Collection to Resource Collection

The job scheduler assigns these tasks to the heterogeneous and distributed processors
under certain criteria. The key to the job scheduling is the determination of such criteria in
respect of the dispatch objective function[5]. The performance of the processor is affected by
the local job and varies through time in the grid computing. In dealing with such situation, This
paper uses a new standard, the TPCC (total processor cycle consumption)[6]. This criterion has
taken into account the variation of the processing capability of the grid through time and proved
that it is equivalent to the makespan. This paper measured the performance of schedulers in the
light of TPCC. The number of instructions processed by the processor P in)1,(tt is

represented by tpn , . T represents a collection of n independently working sets. Each task can be

replaced by a three tuple  tpv ,, , among which, Tv , mp 1 , where, m is the number of
processor and t is the starting time for each task. The TPCC formula is shown as follows:

TPCC=  
 

makespan

t

m

p
tpn

0 1
, (2.1)

2

Job
1

Resource
1

Job
n

Resource
n

Job
2

Resource2

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
6
0

An Improved Job Scheduling Tianwei Ni

It can be seen from Formula (2.1) that a scheduler’s TPCC is in proportion to its
makespan. This paper discusses an improved job scheduling algorithm for the grid computing
based on TPCC. The time of matching resources with tasks will be added to the makespan, as
shown in Formula (2.2):

)(maxmakespan
1

pp

m

p
S 


 (2.2)

Where pS represents the time for the calculation of processor P; p represents all the tasks
in respect of the dispatch time span before Processor P calculates the tasks, which includes the
time used for the task creation and the acquisition of resources, etc..

3. Algorithm Flow Description

An improved job scheduling algorithm is proposed in this paper. The scheduling algorithm
considers TPCC as the criterion and achieves the minimum of TPCC by the scheduling strategy.
The required data structure should be defined before the algorithm is proposed, as shown in Fig.
2.

1) queueWait _ : a FIFO queue.
2) queueRun _ : the queue of running job.
3) iP : represents the job priority. The job scheduler decides the operation procedure to

accept parameters of the system resources at the priority level in case of dealing with multiple
working procedures, as shown in Formula (3.1):

StlipPi *][ (3.1)

where][ip is the initial value of priority, St represents the job status and l represents
constant factor.

Figure 2 : Data Structure of System Scheduler

The data structure is divided into a wait queue to submit job and a global run queue as
shown in Fig. 2. queueWait _ represents a wait queue to submit job and the wait queue is “first in
and first out” (FIFO) queue. There is a waiting for submission to the local scheduler in this
queue. queueRun _ represents a global run queue which is the running job. Abscissa refers to the
run length and the ordinate refers to the number of resources Used to run job. The job is selected
to run by the scheduler in turn in this queueWait _ ; but if some resources can't satisfy the
operation needs, the job will continue to wait while increasing the priority of the job as well.
When the system released some resources, the resources will be allocated for the job which is
waited.

The Pseudocode of job scheduling algorithm based on data structure of Fig. 2 is designed
as follows：

Void Scheduler (set T, set P)

3

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
6
0

An Improved Job Scheduling Tianwei Ni

{if（job ti accomplished）
for the job ti in queueWait _

if (Pi != null)
if (Pi = =Pmax)
if (resources can satisfy the operation needs)
the scheduler assigns resources to the job on the basis of backfilling
else
Pi ++
 next job is dispatched in queueWait _

 end if
else if (Pi= =Pj)
if (resources can satisfy the operation needs)
the scheduler assigns the resource to the job on the basis of FCFS
else
Pi ++
 select a job on the basis of backfilling
 end if
else
select a job on the basis of priority strategy
end if
 else
Pi ++
when the system released some resources, which will be allocated for the job which is

waited on the basis of backfilling
end if
end if
}End

4. Simulation and Experiment

This paper uses GridSim to simulate the system’s performance[7]. GridSim is a grid
simulator tool based on discrete event simulation package for Java. It supports the
heterogeneous style resources and the application of the modeling and simulation.

This simulation compares the performance of the improved algorithm with the EASY-
backfillling algorithm as proposed in reference under different scheduling times. It is the
algorithm that is a typical aggressive backfilling algorithm [8]. According to the simulation
requirements, the algorithm sets two routers of network topology with one used to connect the
scheduler and the other to connect all the computing resources; and the bandwidth between two
routers is 10Mb/sec. The grid resource is set in the space-shared mode and the network
transmission delay is 20 ms. The simulation results indicate the improved algorithm can greatly
improve the resource utilization rate; at meanwhile, it can also track the system throughput rate
with excellent performance, as shown in Fig. 3.

4

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
6
0

An Improved Job Scheduling Tianwei Ni

0

200

400

600

800

1000

1200

10 20 40 60 80

number of jobs
e
x
e
c
u
t
i
o
n

t
i
m
e
(
s
)

Improved
algorithm
EASY-
backfillling

Figure 3 : Influence of Task Size on Execution Time

If the number of resources and the size of tasks remain the same, the number of the grid
resource sets is 10 and the bandwidth of the link between each resource and router is 1Mb/sec
with the task size between 1*109 instructions/sec ~ 3*109 instructions/sec. The simulation
results indicate the performance of the improved algorithm is relatively advanced when
compared with that of EASY-backfilling along with the increase in the number of jobs. This is
because when the number of jobs increases, the job scheduling time saved by the use of the
method is more obvious, thus saving TPCC tremendously, as shown in Fig. 4.

0

20

40

60

80

100

120

10 20 40 60 80

number of jobs

T
P
C
C Improved

algorithm

EASY-
backfillling

Figure 4 : Influence of the Task Size on TPCC

5. Conclusion

This paper mainly discusses an improved job scheduling algorithm based on the first
distribution and redistribution strategy in the grid environment; besides, the design of the
system scheduling model and the algorithm description are discussed. Upon the experiment
verification, this algorithm can efficiently improve the system resource utilization rate and the
system load balancing. Of course, there are some topics not covered herein, for example,
whether the scheduler can make a decision on the starting time and ending time of each job is
the basic standard that makes assessment of implementing resource reservation strategy.
Hopefully, we are able of increasing the resource reservation algorithm to improve the system’s
throughput rate to certain extent.

References

[1] Casanova H, Legrand A, Zagorodnov D,Berman F. Heuristics for scheduling arameter sweep
applications in grid environments[C]. Proceedings of the 9th heterogeneous computing workshop
(HCW’2000). IEEE Computer Society Press.pp,349-363(2000)

5

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
6
0

An Improved Job Scheduling Tianwei Ni

[2] Braun TD, Siegel HJ, Beck N. A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems[J].Journal of 6 parallel and
distributed computing,61(6), 810−837(2001)

[3] Maheswaran M., Ali S.,Siegel H.J.,Hensgen D.,Freund R.. Dynamic matching and scheduling of
a class of independent tasks onto heterogeneous computing systems[C]. The 8th IEEE
Heterogeneous Computing Workshop (HCW’1999). IEEE Computer Society Press.pp,30–44(1999)

[4] Graham R.L.. Bounds for certain multiprocessing anomalies[J].The Bell System Technical
Journal. 45,1563–1581(1966)

[5] Lei Zhang，Yi Wang. A Fault Tolerant Grid Scheduling Algorithm for Coarse-Grained Tasks in
Parameter Sweep Applications[J]. Journal of Hohai University(Natural Sciences),36(2),258-
262(2008) “ (In Chinese)

[6] Bucur I D, Epema H J. Local versus global schedulers with processor co-allocation in
multicluster systems[J].Lecture Notes in Computer Science.2537,184-204(2002)

[7] Buyya R, Murshed M. Gridsim: a toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing[J].The Journal of Concurrency and
Computation:Practice and Experience.14(13-15),1175-1220(2002)

[8] Hong Jiang, Tianwei Ni. PB-FCFS--A Task Scheduling Algorithm Based on FCFS and
Backfilling Strategy for Grid Computing[C]. The 2009 Joint Conference on Pervasive
Computing(JCPC’2009) , IEEE Computer Society Press.pp,507-510(2009)

6

	Department of Information Engineering Henan vocational and technical college, 450046 Zhengzhou China
	E-mail:‍zhengbaolin_2001@163.com
	
	1. Introduction
	2. System Scheduling Model
	3. Algorithm Flow Description
	4. Simulation and Experiment
	5. Conclusion
	References

