
P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
7
7

Understanding of the Component-Based Software
Evolution by Using Similarity Measurement

Xiaozheng Zhu1

Jiangxi Normal University, College of Computer and Information Engineering
Nanchang, Jiangxi, 330022, China
E-mail:381506605@qq.com

Linhui Zhong23

Jiangxi Normal University, College of Computer and Information Engineering
Nanchang, Jiangxi, 330022, China
E-mail: shiningto@jxnu.edu.cn

Hongyan Zong
Jiangxi Normal University, College of Computer and Information Engineering
Nanchang, Jiangxi, 330022, China
E-mail: 736994262@qq.com

Changyuan Hou
Jiangxi Normal University, College of Computer and Information Engineering
Nanchang, Jiangxi,330022, China
E-mail:1137470916@qq.com

Nengwei Zhang
Jiangxi Normal University, College of Computer and Information Engineering
Nanchang, Jiangxi, 330022, China
E-mail: 237438508@qq.com

The traditional methods of understanding software evolution by using measurement primarily
focus on file, directory or project, and take measurement on software attributes (such as
software complexity, modularity and software reusability. etc.), which lack the ability of
measuring software evolution at a higher level. In this position paper, we propose an approach to
measure the evolution similarity between the component-based software based on the attribute
change, and focus on designing an interpolation algorithm to deal with the situation of different
versions when taking measurement. Experimental results are given to show the utility of the
algorithm.

CENet2015
12-13 September 2015
Shanghai, China

1Speaker
2Corresponding Author
3The article is sponsored by the National Natural Science Foundation Project
(No.61262015, No.61462040), Jiangxi Provincial Natural Science Foundation Project
(20142BAB207027,20142BAB207011), Jiangxi science and technology support project
(20142BBE50028).

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
7
7

Understanding of the Component-Based Software Evolution Xiaozheng Zhu

1. Introduction

The software evolution is a process of developing software initially and then repeatedly
updating it for various reasons. Currently, more and more attentions have been paid to the
software evolution. The workshop about mining software repository focuses on the theme about
how to mine useful information from the software repository to the improve the software quality
and reliability.

In order to measure the change of software, two problems have to be solved as follows: (1)
how to obtain the software historical data or the software evolution information. Software
evolution information is mainly stored in CASE tools such as the software configuration
management system and the error reporting system, which use the file or project as the basic
unit to record software changes; however, with the popularization of the component-based
software development, the concept of component and software architecture cannot directly be
mapped into the software configuration management system and it will become more difficult in
dealing with the component-based software evolution information. (2) Lack the technology of
measuring the software evolution information. At present, the measurement of software
evolution mainly aims at change of the size or structure of source code. With the increasing
complexity of software system, it becomes much more difficult in understanding and measuring
the software evolution; therefore, it’s necessary to put forward a new measurement technology
for component-based software evolution.

In order to solve the above problems, we propose an evolution similarity measurement
based on the traditional measurement and focus on the virtual version insert algorithm for the
component-based software because the evolution similarity measurement might face the
problem of having different versions. This work is organized as follows; related work is
discussed in Section 2. In Section 3, we’ll describe the evolution similarity measurement and the
virtual version insert algorithm, finally the conclusion is given.

2. Related Works

2.1 Software Evolution Measurement

The traditional software measurement mainly aims at measuring a single software's
attributes (e.g. software complexity, modularity and reusability degree); however, the software
evolution measurement is different from the measurement for a single software system to
examine multiple versions of software system[1][2].

At early times, the software evolution measurement was focusing on the number of change
of software system code and module, etc. For example, Lehman discovered the Laws of
Software Evolution, on the basis of studying the history of operating system IBM360/370[3],
found the characteristic of the linear tendency of software evolution by measuring the change
number of module. Later, Roble studied the kernel subsystems to measure the change of SLOC
(Source Lines of Code) and made a conclusion that the software evolution had the characteristic
of hybrids (linear/super-linear) increasing [4].

In recent years, researchers have been trying to deeply make insight on software evolution
measure from model, structure change or defects of software. For example, Pamela proposed a
method to predict the cost of software development and maintenance by measuring the topology
of Graph, including the diagrams based on the source code (such as call graph, module
collaboration diagrams.etc.) and the collaboration diagrams among developers based on bug and
change requests[5]. Christoph took OWL (Ontology Web Language) as data exchange format
for software repository, based on which he analyzed the software system evolution by designing
a query engine iSPARQL and a query language SPARQL extended the function of RDF, which
can be applied to the software evolution visualization, software measure and code bad smells
detection[6]. Alexander Chatzigeorgiou proposed to adopt DEA (Data Envelopment Analysis)
as a means of providing a unified view of selected design metrics. DEA aimed at assessing the
overall trend of quality during the evolution of software systems and it enabled the perception of

2

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
7
7

Understanding of the Component-Based Software Evolution Xiaozheng Zhu

global trends in qualitative characteristics [7]. Gregorio Robles proposed to move from the
physical towards a level that includes semantic information by using functions or methods for
measuring the evolution of a software system and they pointed out that use of functions-based
metrics may has many advantages over the use of files or lines of code [8].

2.2 Similarity Measure

The similarity measurement is the distance between various data points[9], which are used
in measuring the similarity between sets based on the intersection of two sets. It’s known that as
a function that computes similarity degree between a pair of text objects in the area of
information retrieval, it can also be used in the area of computer science. For example,
Hierarchical Similarity Measurement Model (HSM) of program’s execution is proposed, which
avoids having to explicitly form an equation by work like a Black-box model[10]. It uses a
similarity value to compute the fitness function and supports primitive, abstract and complex
data types. The similarity measurement technology in information retrieval (IR) is also used to
reveal the basic connections between features and computational units in the source code [11].

3. Evolution Similarity Measurement of Component-Based Software

Different from other similarity measurements, the evolution similarity measurement of
component-based software based on property should consider two aspects (used in 3.1), that is,
1) the software architecture remains unchanged with the component changing. In that situation,
the system change can be considered as the overall change on all components; 2) the software
architecture is changed, which means the change can be calculated by using the editing distance
as the minimum number with editing operation (insert, delete, replace) in the transformations
between the tree or graph [12].

3.1 Evolution Similarity Measurement

The evolution similarity measurement refers to the measurement of its similarity of change
with the given attributes (e.g. the number of files, etc.) during a period. Generally, the software
architecture can be considered as a composite component; therefore, in this article, we don’t
make a distinction between software architecture and component in the evolution similarity
measurement except selection of the measurement attributes, that is, when the software
architecture evolution similarity is measured, we not only consider the file attributes but also the
structure attributes. The formula of the evolution similarity measure is as follows:

 Sim p(C1，C2)=

C⃗1∗C⃗2
∥C1∥∗∥C2∥

=

∑
i=1

n

ai∗bi

√∑
i=1

n

(a i)
2
∗√∑

i=1

n

(bi)
2

 (3.1)

Where, C1
uur

and C2
uur

 are separately expressed as the change vector about the attribute P of
Component C1 and C2; that is, the attribute change vectors of Component C1 and Component
C2 is corresponding to < a1, a2, a3, …, ai, …, an-1, an > and < b1, b2, b3, …, bi, …, bn-1, bn >.
Obviously, the value of the evolution similarity measurement is ranging from 0 to 1, the higher
the number is, the higher evolution similarity will be, or vice verse.

3.2 Interpolation Algorithm on Virtual Version

The evolution similarity measurement formula requires that the change vector of
Component C1 should have the same length as Component C2; however, when the versions of
two components are extracted during a specified period, we cannot always ensure that the
number of version for each component is the same. For example, Component C1 may choose
versions as VERSC1 = {V1, V2, V3, V4, V5}, and the versions of Component 2 is VERSC2 = {V1,
V2, V3}, which lead to different dimensions of change vector in the evolution similarity

3

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
7
7

Understanding of the Component-Based Software Evolution Xiaozheng Zhu

measurement. In this case, the dimension reduction or the dimension raising method can be used
to make change vector to have the same length. In this paper, the dimension raising method is
adopted, in other words, a number of virtual versions are inserted in the low dimensional vector.
For example, VERSC2 = {V1, V2, V3} may be turned into VERS'

C2 = {V1, V1
*, V2, V2

*, V3}, where
V1

*And V2
* are the virtual versions, whose contents are respectively the same as that of V1 and

V2. The algorithm of translation from VERSC2 to VERS'
C2 should meet the following basic

principles, and the detail of algorithm is also given.

 Basic principles that the algorithm should meet.

1) After insertion, the sum of the time gap in the corresponding position among different
components should be as small as possible.

2) The insertion of virtual versions should keep the component's evolution trend as possible
 Algorithm: virtual version insert

Firstly, we define the data structure of componentversion as follows:
 Public class Component version {

 String component name; // name of component
 Array List property value = new Array List ();//attributes value of component
 Date create time; //the deadline of component; ……. }

 Input: the componentlist vector and componentlist0 vector, which have different lengths and
contain some data, such as the component name and the component attributes etc.

 Output: the midlist stores the two vectors after inserting virtual version
 Steps:

– Step 1: it takes the submission time of the version of componentlist and
componentlist0, read into alist and blist respectively, and the alist extract the high
dimensional vector data, the other extract the low;

– Step 2: try to choose a position to insert virtual version in the blist. At first, we should
add 1 on the length of array blist, and try to insert a virtual version from the end position
to the top position. The detail is shown as follows.
1. It will set the deadline of the virtual inserted version as blist.set (j, (blist.get(j-

1)*2-blist.get(j-2))), if the position inserted is j= blist.size()-1.Then it sums the time
gap of the data in array alist and blist before number j.

 int sum = 0;
 for (int k = 0; k <= i; k++) {
 int sub = alist.get(k) - blist.get(k);
 sum = sub + sum;}
2. It will move the location of array blist behind the number j back one position, blist.

set (j+1, blist.get(j)), if the inserted location is j >=0 && j < blist. size()-1; if the
inserted position is j==0, it will set the attribute changevalue of the virtual version
as blist.set (j,((blist.get (j+1))*2-blist.get(j+2))); otherwise, set it as blist.set(j,
(blist.get(j-1) + blist.get (j+1))/2). Then it sums the time gap of the data of two array
alist and blist before number j.

– Step 3: select the position of virtual version. According to arithmetic bubble, we select
what can make the absolute value of sum to the minimum insertion into the position; then
save the blist’s data into midlist.
intmid = MAX; //a max value
 if (Math.abs(mid) > Math.abs(sum)) {
 mid = sum; location = j + 1;
 for (int k1 = 0; k1 < asize; k1++) {
 midlist.set(k1, blist.get(k1));

}// select the right location data into the middle of the array}
– Step 4: Start a looping execution with Step 2 and Step 3 from

i=blist.size() to i<alist.size().
– Step 5: return the data in variable midlist

4

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
7
7

Understanding of the Component-Based Software Evolution Xiaozheng Zhu

3.3 Experiment

We experiment the algorithm in three open source projects, that is TreeView, JavaGeom
and PasswordSafeSWT. TreeView is a simple program for displaying phylogenies on Apple
Macintosh and Windows PCs. Some more details in website; The aim of JavaGeom is to
provide methods to easily perform geometric computa -tions. The last is a Java version of the
PasswordSafe password management utility, which allows people to manage multiple
passwords easily and securely.

As to the specified time period (from September 1, 2009 to March 1, 2014), we mark
three extracted version components respectively as VERSTreeView={V1, V2,V3}, VERSJavaGeom

={V1,V2,V3,V4,V5} and VERSPasswordSafeSWT= {V1,V2,V3, V4} from the software configuration
management system. The history data is shown in table 1 and 2. The horizontal dimension of the
table header indicates the version sequence of component, it’s the deadline of each of the
components in Table1, and the number of files in Table 2. There is a process to make the
dimension of TreeView and PasswordSafeSWT equal before we process the evolution similarity
measurement with TreeView and JavaGeom, PasswordSafeSWT and JavaGeom.

1 2 3 4 5
JavaGeom 2009-09-06 2010-11-06 2011-12-04 2012-07-15 2014-02-23
TreeView 2009-09-08 2010-06-08 2014-01-28

PasswordSafeSWT 2009-02-15 2009-11-12 2010-12-21 2011-03-25

Table 1: Deadline of Version of Components: TreeView, JavaGeom and PasswordSafeSWT

1 2 3 4 5
JavaGeom 144 151 165 162 163
TreeView 488 352 357

PasswordSafeSWT 110 130 145 146

Table 2: Number of File of Components: TreeView, JavaGeom and PasswordSafeSWT

Fig.1 shows the change for each version of Component TreeView and Password -SafeSWT
(the horizontal dimension represents the version sequence. The vertical one represents the
attribute value) by using our algorithm to improve the dimen-sion of component version list
VERSTreeView and VERSPasswordSafeSWT. VERSTreeView inserts the virtual version V3

*, V4
* between

Number 3 and 4 respectively, VERS-PasswordSafeSWT inserts the virtual version V4
* into number 4,

and it gets lists VERTree-View={V1,V2,V3
*,V4

*,V3} and VERPasswordSafeSWT={V1,V2,V3,V3
*,V4} after

insertion.
1 2 3 4 5

JavaGeom 144 151 165 162 163
TreeView 488 352 216 80 357

PasswordSafeSWT 110 130 145 160 146

Table 3: Number of File of Components: TreeView, JavaGeom and PasswordSafeSWT

Table 3 illustrates the version change historical data of component TreeView and
component PasswordSafeSWT by inserting a virtual version (Table 3 shows the virtual version
number in bold). According to Table 3, the corresponding attributes change vector of
components JavaGeom, TreeView and PasswordSafe SWT are ACJavaGeom=<7,14,3,1>,
ACTreeView=<136,136,136,277>, ACPasswordSafeSWT= <20,15,15,14>. According to Formula (1), the
evolution similarity degree of Components JavaGeom and TreeView is 0. 6098 in special time,
and the evolution similarity degree of components JavaGeom and PasswordSafeSWT is 0.7919.
It can be seen that the evolution similarity with JavaGeom and PasswordSafeSWT is much
higher than others from the change of file.

5

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
7
7

Understanding of the Component-Based Software Evolution Xiaozheng Zhu

Figure 1: The Same Dimension Processing of Components Input Vector

4. Conclusion

It has been widely accepted that software evolution information can contribute to the
development of component-based software.; however, with the increasing amount and
complexity of software system, it’s more difficult to understand and measure the software
evolution. Therefore, in this paper, we take the evolution information of component-based
software as research target and component as the base unit of software evolution measurement,
propose a method to compare component-based software based on the evolution similarity
measurement and the corresponding virtual version insertion algorithm. What should be pointed
out is that the current work is experimented at small component-based software system. In the
future, we will improve the efficiency of our system and provide automatic processing ability to
deal with large component-based software system.

References

[1] P. Louridas, D. Spinellis, and V. Vlachos. Power laws in software. ACM Transactions on
Software Engineering and Methodology,USA vol.18, no.1, pp.1-26(2008)

[2] Y. Ma, K. He, J. Liu. Network Motifs in Object-Oriented Software Systems. Dynamics of
Continuous, Discrete & Impulsive Systems, 14(S6): pp.166-172(2007)

[3] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. Perry. Metrics and Laws of Software Evolution-
the Nineties View, Proceedings of the Fourth International Software Metrics Symposium,IEEE
Computer Society.Los Alamitos, California.USA, pp.20-33(1997)

6

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
7
7

Understanding of the Component-Based Software Evolution Xiaozheng Zhu

[4] G. Robles, Juan. Jose. Amor. Evolution and Growth in Large Libre Software Project,
Proceedings of the International Workshop on Principles of Software Evolution,IEEE Computer
Society,San Diego,CA. pp.165-174(2005)

[5] P. Bhattacharya, M. Iliofotou, I. Neamtiu, M. Faloutsos. Graph-Based Analysis and Prediction
for Software Evolution, International Conference on Software Engineering–ICSE,IEEE Computer
Society,Pittsburgh, Pennsylvania. pp.419-429(2012)

[6] C. Kiefer, A. Bernstein. Mining Software Repositories with iSPARQL and a Software Evolution
Ontology, Fourth International Workshop on Mining Software Repositories (MSR'07).IEEE
Computer Society,MN,USA.pp. 10-18(2007)

[7] A. Chatzigeorgiou, and E. Stiakakis, Combining metrics for software evolution assessment by
means of Data Envelopment Analysis, J. Softw.: Evol. and Proc. Journal of Software Evolution &
Process, WILEY.USA. 25:pp. 303-324(2013)

[8] G. Robles, and I. Herraiz, Modification and Developer Metrics at the Function Level:Metrics for
the Study of the Evolution of a Software Project, WETSoM 2012(IEEE), Zurich, Switzerland,pp.49-
55(2012)

[9] A. K. Patidar , J. Agrawal, and N. Mishra, Analysis of Different Similarity Measure Functions
and their Impacts on Shared Nearest Neighbor Clustering Approach, International Journal of
Computer Applications, 40(16), pp.1-5(2012)

[10] A. Reungsinkonkarn, Hierarchical Similarity Measurement Model of Program Execution, 4th
IEEE International Conference on Software Engineering and Service Science, IEEE Computer
Society,Milan, Italy.pp.255 – 261(2013)

[11] B. Dit, M. Revelle, and D. Poshyvanyk , Integrating Information Retrieval, Execution and Link
Analysis Algorithms to Improve Feature Location in Software, Empirical Software Engineering
(EMSE), 18(2), pp. 277-309(2013)

[12] T. Sager, A. Bernstein, M. Pinzger, and C.Kiefer. Detecting Similar Java Classes Using Tree
Algorithms.2006, In Proc. of the 2006 Int. Ws. On Mining Software Repositories (MSR'06)IEEE
Computer Society, New York,NY.pp.65-71(2006)

7

