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1. Introduction

In these proceedings we provide a consistency proof (ngt polver counting, but a proof that
proves that there are enough Wilson coefficients) of quaspmmalizability in SMEFT. Theory
deals with the well founded theoretical results obtainexinfifirst principles, while phenomenol-
ogy deals with not so well founded effective models with a Bnalomain of application. For a
definition see Ref.

Mathematics suffers from some of the same inherent diffiesiths theoretical physics: great suc-
cesses during the 20th century, increasing difficultiesotbetter, as the easier problems get solved.
The lesson of experiments 1973 - today: itis extremely diffito find a flaw in the Standard Model
(SM): maybe the SM includes elements of a truly fundamemhizbtty. But then how can one hope
to make progress without experimental guidance? One shpaydclose attention to what we do
not understand precisely about the SM even if the standaigice is “that’s a hard technical
problem, and solving it won't change anything”.

There is a conventional vision: some very different physiceurs at Planck scale, SM is just an
effective field theory. What about the next SM? A new weaklygied renormalizable model? A
tower of EFTs? A different vision: is the SM close to a fundataétheory?

It is possible that at some very large energy scale, all mmrealizable interactions disappear.
This seems unlikely, given the difficulty with gravity. It@ssible that the rules change drastically,
it may even be possible that there is no end, simply more ard suales. This prompts the impor-
tant question whether there is a last fundamental theotyisrtéwer of EFTs which supersede each
other with rising energies. Some people conjecture thatdbeper theory could be a string theory,
i.e. atheory which is not a field theory any more. Or should oltienately expect from physics
theories that they are only valid as approximations and imadd domairt'?? Alternatively, one
should not resort to arguments involving gravity: let usibarfurther thoughts about gravity and
the damage it could do to the weak scale.

When looking for ultraviolet (UV) completions of the SM thalbwing remarks are relevant: there
are 45 spin 12 and 27 spin 1 dof, only one spin 0? If there are more the ptésemwledge requires
a hierarchy of VEVs which, once again, is a serious fine-tgrproblem. Why are all mixings
small? Is it accidental or systematic (i.e. a new symmetmh@ real problem when dealing with
UV completions is that one model is falsifiable, but an ersllseam of them is not.

2. Theoretical framework

Back to the “more and more scales” scenario. Let's underggioe (SMEFT) but it is an error to
believe that rigour is the enemy of simplicity. On the contreve find it confirmed by numerous
examples that the rigorous method is at the same time thelesirmapd the more easily compre-
hended. To summarize: there is a need for a consistent tieeamework in which deviations
from the SM (or NextSM) predictions can be calculated, exfhpogus hypotheses you test, one
of them will give you ap of < 0.05. Such a framework should be applicable to comprehensivel
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describe measurements in all sectors of particle physiekC Higgs measurements, past EWPD,
etc. Consider the SM augmented with the inclusion of higlmedsional operators and call it:T

it is not strictly renormalizable. Although workable to aliders, T fails above a certain scald;.
Consider any BSM model that is strictly renormalizable asgpects unitarity (3); its parameters
can be fixed by comparison with data, while masses of heatgsstae presently unknown. Note
that T; # T, in the UV but must have the same IR behavior. Consider now th@enset of data
below/;: T1 should be able to explain them by fitting Wilson coefficiefisadjusting the masses
of heavy states (as SM did with the Higgs mass at LEP) shouliblgeto explain the data. Good-
ness of both explanations are crucial in understanding heiivtirey match and how reasonable is
to use T, instead of the full . Does T explain everything? Certainly not, but it should be able to
explain something more tham TWe could now define Fas T, augmented with (its own) higher
dimensional operators; it is valid up to a scAlg Etc.

2.1 SMEFT

The construction of the SMEFT, to all orders, is not based ssumptions on the size of the
Wilson coefficients of the higher dimensional operatorsstRe&ing to a particular UV case is not
an integral part of a general SMEFT treatment and variousscaan be chosen once the general
calculation is performed. If the value of Wilson coefficigim broad UV scenarios could be inferred
in general this would be of significant scientific value.

To summarizeconstructing SMEFT is based on the fact that experimerdsrat finite energy and
“measure” an effective actiorf§A); whatever QFT should give low energ§™A), YA < «. One
also assumes that there is no fundamental scale above wHiéhis not definefiand S (A) loses
its predictive power if a process Bt= A requireseo renormalized parameterslt is remarkable
that when constructive proofs are provided, their simpliclways seems to detract from their
originality.

2.2 The UV connection

The SMEFT approach is based on the following Lagran§idf:

00 [+ n oo
o = ZVQH%MH >33 o' ok Ty (2.1)
n= n=Ng =1 k=1

where we use the “Warsaw” basisHereg is theSU(2) coupling constant and
Gar2k = 1/(V2Ge N = g, (2.2)

Gk is the Fermi coupling constant ad is the scale around which new physics (NP) must be
resolved. For each procebkdefines the dim= 4 leading order (LO) (e.gN =1 for H — VV

etc. butN = 3 for H — yy). Ng = N for tree initiated processes ahtd— 2 for loop initiated ones.
Single insertions of dim= 6 operators defines next-to-leading (NLO) SMEFT. Exyldree) vertex

generated bﬁéﬁ) = (¢To) FPHE by ﬁéﬁ} = o'FHVFS DPD, @ etc.
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A simple SMEFT ordertable for tree initiated-% 2 processes is as follows (N.Bg denotes a
single 6® insertion,gZ denotes two, distinct/(® insertions):

g/dim —
I 9, +9mdd) +9my,
P + Py +PRAY,

H g%%?l defines LO SMEFT. There is also RG-improved LO and missindpdrigrders
uncertainty (MHOU) for LO SMEFT;

0 g3ge#s3; defines NLO SMEFT;

O 9o, g*g3#3, give MHOU for NLO SMEFT.

The interplay between integrating out heavy scalars an8hkheecoupling limit has been discussed
in Ref'? In the very general case the SM decoupling limit cannot baiobtl by making only
assumptions about one parameter.

Working in a spontaneously broken gauge theories has coasegs related to the dualityHVEV.
We recall the concept of (naive) power counting (for a gelneranulation of power counting see
Ref3): any local operator in the Lagrangian is schematicallyhefform

dim

Ne

O—=N\" |V|| acwawb (q)’r)d q)eAf

codim

3
5(@tb)+ctdie+ftlfn=4. (2.3)

where Lorentz, flavor and group indices have been suppregseddands for a generic fermion
fields, ® for a generic scalar and A for a generic gauge field. All liglasses are scaled in units of
the (bare) W maskl. We define dimensions according to

codim& = g(a+ b)+c+d+e+f, dim& = codim+1 . (2.4)

One loop renormalization is controlled by: dim6, codim= 4, Ng > 2. The hearth of the prob-
lem: a large number of operators implodes into a small nurobepefficients, e.g. there are 92
SM vertices, 28 CP even operators (1 flavog N 0, 2).

Debate topic for SMEFT is the choice of a “basis” for dim6 operators. Clearly all bases are
equivalent as long as they are a “basis”, containing the mahiset of operators after the use
of equations of motioH and respecting th8U(3) x SU(2) x U(1) gauge invariance. From a
more formal point of view a basis is characterized by its wleswith respect to renormalization.
Equivalence of bases should always be understood as a stdtéon the S-matrix and not for

the Lagrangian, as dictated by the equivalence theoremRe&?* 1> Any phenomenological

approach that misses one of these ingredients is still éaiolepfor a preliminar analysis, as long
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as it does not pretend to be an EFT. Strictly speaking we amsidering here the virtual part of
SMEFT; of course, the real (emission) part of SMEFT shoulthbkided, see Section 2.5.

2.3 Self energies

2
Ouir first step deals with renormalization of self-energiesreAyy = ﬁ —y—Inm—In % nis
space-time dimension, the loop measurgis"d"q and i is the renormalization scale.

o g 4 6
S = 167 ZHH = 672 (T + G620 )

s R S S (]
SR S Y oo
Dw =Dy +8DR,  Pw =P +06Ply
Sa = 122222A+96T“ Az, Sha =MNza T + Pz p* p’,
S = 1222 [Af—I- (Vi—Asy) i ] : (2.5)
We introduce counterterms:
Zi=1+ 13; (dzf‘” +ngZi(6)> Auy . (2.6)

With field/parameter counterterms we can makg J1aa,Dvv,Mza, Vi, A; and the correspond-

ing Dyson resummed propagators UV finiteratg® ge ) , which is enough when working under the
assumption that gauge bosons couple to conserved curr&rgauge-invariant description turns
out to be mandatory.

2.4 Morelegs

However, field/parameter counterterms are not enough tceniBk finite the Green’s functions
with more than two legs. A mixing matrix among Wilson coeffigis is needed:

a = Zz A 7 = 5+ 13 S dZ! Ay - @2.7)

Define the following combinations of Wilson coefficients @va (c,) denotes the sine(cosine) of
the renormalized weak-mixing angle):

8y, = S Bgs + C2 gw — S, Cy Qs

Ban = C28gp + S gw + S, Cy Agus »

8z = 2C,'S, (Bgw — 8¢a) + (2G — 1) Bgua, (2.8)
and compute the (on-shell) decay®) — A, (p1)A, (p2) where the amplitude is

Aln = Taan THY, MHZTHV = pg Py — p1-p2OHY . (2.9)
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This amplitude is made UV finite by mixing, With aua,8s7,8;; andagy

Compute the (on-shell) decay(P) — Au(pl)Zv(pg). After adding 1PI and 1PR components we
obtain

AﬁXz = %AZ T MHZTHV = pg pX —P1-P2 oHY (2-10)
This amplitude is made UV finite by mixing,, with a,,, 8.7, 8;; andagy.

Compute the (on-shell) decay(P) — Z,(p1)Z, (p2). How to use it has been explained in REf.
The amplitude contains @,,,, part proportional tad*¥ and a#?,,;, part proportional tcpé’ py.

Remark Mixing of a,, with other Wilson coefficients make®,,, UV finite, while the mixing of
ayn MakesZy;, UV finite.

Compute the (on-shell) decay(P) — W*“(pl)wﬂ,(pz). This process follows the same decom-
position of H— ZZ and it is UV finite in the dim= 4 part. However, for the dire- 6 one, there are
no Wilson coefficients left free i, SO that its UV finiteness follows from gauge cancellations
(H— AA,AZ,ZZ, WW = 6 Lorentz structures controlled by 5 coefficients).

Proposition 2.1. This is the first part in proving closure of NLO SMEFT underaemalization.
Remark Mixing of ay, makesZ,wy UV finite.

Remark Compute the (on-shell) decay(P) — b(p;1)b(p.). It is dim = 4 UV finite and mixing
of ag, makes it UV finite also at dira- 6.

Remark Compute the (on-shell) decay ) — f(p1)f(p2). Itis dim= 4 UV finite and we intro-
duce

alW:SgalWB+CgaIBW aIB:S(;aIBW—CgaIWBa
adw = S, &dwe + Cy adaw Ads = S; adew — Cy Adws ,
AQw = S, Auws +Cg Ausw g = C, Auws -5 Ausw (2-11)

NI =

a((p?)_a((p::-):%(aipr—i—a(P'A)v agl = > (8gia — AgIv).,
Bouv = g +3u B Baus =By~ Baut g
Bodv = Abe —Bgd — Ay Bgda = Bud +Bgd — Buq » (2.12)
and obtain that
Z — Il requires mixing ofg sw, gl o @Nday, With other coefficients,
Z — TUu requires mixing ofygw,apua andagyyy With other coefficients,

Z — dd requires mixing 0Bgsw,8pda @andayqy With other coefficients,

Z — Vv requires mixing ofag, = 2(afp}) + afp‘?)) with other coefficients.
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At this point we are left with the universality of the electoharge. In QED there is a Ward identity
telling us thate is renormalized in terms of vacuum polarization and WarakB8bv-Taylor (WST)
identities allow us to generalize the argument to the full. $¥& can give a quantitative meaning
to the the previous statement by saying that the contributiom vertices (at zero momentum
transfer) cancels those from (fermion) wave function remaization factors. Therefore, compute
the vertex Af (at g2 = 0) and the f wave function factor in SMEFT, proving that the W@entities
can be extended to dim 6; this is non trivial since there are no free Wilson coeffitgein these
terms (after the previous steps); the (non-trivial) finéss of e~ — ff follows.

Proposition 2.2. This is the second part in proving closure of NLO SMEFT undeormalization.

2.5 ThelR connection

Consider the decay Z- II, where the amplitude is

dtree—g%(“)—kggsﬂfl( )7 (2.13)
AL ) A9 =Ly (Vi Ay (2.14)
= g, WY ’ = g Y (ALY '
S
(2]
1 2
+4—C9(7_S§) %o+~ Balv;
s 1 2
A|:gaAA—f—Ceazz—’—SeaAz_rCea(pD"i_ga(pLA- (215)

After UV renormalization, i.e. after counterterms and mgxihave been introduced, we perform
analytic continuation im (space-time dimensionj,= 4+ € with ¢ positive.

Proposition 2.3. The infrared/collinear part of the one-loop virtual corteans shows double fac-
torization.

g4
1) [av =
1) lav = 35278

Proposition 2.4. The infrared/collinear part of the real corrections showsuthle factorization.

rz—1 My 529""”[ >(1+g6Ar)+gGrgG>}. (2.16)

4
384 38418

Proposition 2.5. The total = virtual + real is IR/collinear finite aZ’(g*ge).

[PP(Z —T+1+(y)) = Mz 7 (7 (14 geA) 40670 |- (2.17)

Assembling everything gives (terms in red give the SM anywer

3
I _ 3.0 ) . GeM
Moeo = 4 Mo (1+68Gk0) + To= 2421 (#+1)
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3
® C 512 v_

_|_

16 1
T gt %
© _ (1 _cu_yv2) L 1
5QED_ (l 6V v|) Cg (se Ann 4a¢D>

S 2
112 - f) <azz+c_eaAz>+@ (Buin V1 Bgiv) (2.18)
(] 2]

2.6 Next steps

The W-decay series is almost completed; next, inclusiorripfefquadrupole gauge couplings,
last stop before renormalizability? This brings us to gaagemalies and anomaly cancellation;
d’Hoker-Farhil” (Wess-Zuminé®) terms required? Extra symmetry? Severe problems are ex-
pected; perhaps, a deeper understanding of SMEFT, a lompelimit of an underlying anomaly-
free theory?

Proposition 2.6. SMEFT anomalies are UV finifé is good for renormalizability), restoring gauge
invariance order-by-order by adding finite counterterms, iit is possible to quantize an anoma-
lous theory in a manner that respects Wamd local The latter is good for unitarity, another
tiny step forward.

3. Conclusions

NLO results have already had an important impact on the SMptyBics program. LEP con-
straints should not be interpreted to mean that effectivieBMparameters should be set to zero in
LHC analyses. It is important to preserve the original datd just the interpretation results, as the
estimate of the missing higher order terms can change owet thodifying the lessons drawn from
the data and projected into the SMEFT. The assignment ofcadtieal error for SMEFT analyses
is always important. Considering projections for the psiri to be reached in LHC Runll analy-
ses, LO results for interpretations of the data in the SMEf€Tchallenged by consistency concerns
and are not sufficient, if the cut off scale is in the féveVrange. If the scale is below experimen-
tal sensitivity we are in trouble, but let's push constraitd the experimental limit consistently.
Unfortunately, ideas that require people to reorganizé theture of the world provoke hostility.

To conclude, the journey to the next (and next-to-next) SN reguire crossing narrow straits of
precision physics. If that is what nature has in store fomesmust equip ourselves with both a
range of concrete models as well as a general theories. Howeach paradigm will be shown to
satisfy more or less the criteria that it dictates for itsaifl to fall short of a few of those dictated
by its opponent.
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