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1. Introduction

Form factors play an important role in the computation of higher order radiative corrections
to scattering processes at the Large Hadron Colliders (LHC). They are nothing but matrix ele-
ments of local field operators between on-shell quark and gluon states. In the present work, we
compute the three-loop QCD corrections to the quark and gluon form factors for pseudo-scalar
operators. They appear in effective field theory descriptions of extensions of the Standard Model
[1, 2, 3, 4, 5, 6, 7, 8]. The recent discovery of a Standard-Model-like Higgs boson at the LHC [9, 10]
prompted the community to study the properties of the discovered boson in order to identify either
with lightest scalar or pseudo-scalar Higgs bosons of extended models. These corrections can be
used to obtain the next-to-next-to-next-to leading order and leading log (N3LO and N3LL) gluon
fusion cross sections [11, 12] for pseudo-scalar Higgs boson production, thereby reducing the the-
oretical uncertainities resulting from renormalisation and factorisation scales. We use the universal
infra-red (IR) pole structure of the form factors to determine the ultraviolet (UV) renormalisation
constants and mixing of the effective operators up to three loop level. The finite renormalisation
constant, known up to the three loops [13], that preserves one loop nature of the chiral anomaly,
is shown to be consistent with anomalous dimensions of the overall renormalisation constants. We
also derive the hard matching coefficients for N3LL resummation in soft collinear effective theory
(SCET).

2. Effective theory and Form Factors

The effective Lagrangian [14] describing the interaction between a pseudo-scalar ΦA and QCD
particles reads:

L A
eff = Φ

A(x)
[
− 1

8
CGOG(x)−

1
2

CJOJ(x)
]

(2.1)

where the operators are defined as

OG(x) = Gµν
a G̃a,µν ≡ εµνρσ Gµν

a Gρσ
a , OJ(x) = ∂µ (ψ̄γ

µ
γ5ψ) . (2.2)

The constants CG and CJ are Wilson Coefficients that depend on the mass of the top quark mt . CG

does not receive any QCD corrections beyond one loop due to the Adler-Bardeen theorem [15], but
CJ does through the strong coupling constant. Defining as ≡ g2

s/(16π2) = αs/(4π), they are given
by

CG =−as2
5
4 G

1
2
Fcotβ

CJ =−
[
asCF

(
3
2 −3ln µ2

R
m2

t

)
+a2

sC(2)
J + · · ·

]
CG . (2.3)

Gµν
a and ψ represent gluonic field strength tensor and light quark fields, respectively and GF is the

Fermi constant and cotβ is the mixing angle in the Two-Higgs-Doublet model. as is renormalised
at the scale µR.

The computation of higher order terms in dimensional regularisation when γ5 is present in-
volves a proper definition in d 6= 4. We have followed the most practical and self-consistent defini-
tion of γ5 which was introduced by ’t Hooft and Veltman through [16]

γ5 = i
1
4!

εν1ν2ν3ν4γ
ν1γ

ν2γ
ν3γ

ν4 . (2.4)
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Here, εµνρσ is the Levi-Civita tensor where the indices span over d dimensions.
The calculation of the unrenormalized pseudo-scalar form factors up to three loops are done

using the method that was followed to compute three-loop scalar and vector form factors [17, 18].
The transition matrix elements are generated using QGRAF [19]. The resulting large number
of scalar integrals are expressible in terms of a much smaller set of scalar integrals, called master
integrals (MIs) using integration-by-parts (IBP) [20, 21] and Lorentz invariance (LI) [22] identities.
While the LI identities are not linearly independent from the IBP identities [23], they do however
help to get the solution efficiently. Using the Laporta algorithm, [24], a reduction to MIs [25, 26, 27,
28, 29] is accomplished with the help of the packages LiteRed [30, 31]. We use Reduze2 [32, 33]
for momentum shifts.

The UV renormalisation for the form factors requires the renormalisation of the coupling
constant and of the operators. The formalism used for the γ5 matrix fails to preserve the anti-
commutativity of γ5 with γµ in d dimensions violating Ward identities. To rectify this, one needs to
introduce a finite renormalisation constant Zs

5 [13, 34] in addition to other constants Zi j, i, j = G,J,
i.e., [Oi]R = Zi j[O j]B with ZJG = 0,ZJJ ≡ Zs

5Zs
MS

. These constants are already available to the re-
quired accuracy [13, 35] to obtain UV finite form factors of the pseudo-scalar operators to three
loop level in QCD. In this article, we have recalculated them from our on-shell amplitudes com-
puted up to the three loop level using the structure of infra-red poles. The infrared divergences
in QCD amplitudes exhibit an universal behaviour. The very first successful proposal was by
Catani [36] (see also [37]) at one and two loop level in QCD. The structure of the single pole in
quark and gluon form factors in terms of soft and collinear anomalous dimensions was first ob-
served in [38] up to two loop level and at three loop, it was established in the article [39]. The
generalisation to Catani’s proposal beyond two loops was achieved by Becher and Neubert [40]
and by Gardi and Magnea [41]. We have calculated all the required renormalisation constants Zi j

from the consistency conditions on the universal structure of the infrared poles of the UV renor-
malised form factors. In addition, we have used the anomaly equation to determine Zs

5. We find
that they are in agreement with those derived using a completely different approach. Using these
constants, we obtain the UV-finite form factors. They are presented in [42].

The renormalisation group invariance of the anomaly equation [13], i.e.,

[OJ]R = as
n f

2
[OG]R . (2.5)

gives

γJJ =
β

as
+ γGG +as

n f

2
γGJ . (2.6)

where the anomalous dimensions γi j are defined as

µ
2
R

d
dµ2

R
Zi j ≡ γikZk j i, j,k = G,J. (2.7)

We find that our results on γGG and γGJ are in agreement to O(a2
s ) with [13] and to O(a3

s ) with
[35]. It was observed through explicit computation in the article [13] that γGG =−β/as holds true
up to two loop level. The results from [35] based on the operator product expansion show that it is
also valid at three loops. Here, through explicit calculation, we arrive at the same conclusion. The
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anomalous dimension thus obtained up to the three loop level are not only in complete agreement
with the earlier results but also consistent with the above anomaly equation, i.e., in the limit of
d→ 4. This serves as one of the most crucial checks on our computation.

The relation between the QCD form factors and those of the N = 4 supersymmetric Yang-
Mills (SYM) theory was found in [43, 44, 45], called the leading transcendentality principle which
relates anomalous dimensions of the twist two operators in N = 4 SYM to the leading transcenden-
tal (LT) terms of such operators computed in QCD. We find that the LT terms of the diagonal form
factors are identical to those of quark and gluon form factors when CA =CF = N and Tf n f = N/2
and that LT terms of non-diagonal form factors are identical to each other after replacement of the
color factors up to an overall factor 2l , where l is the number of loops.

The UV renormalised form factors in QCD contain infrared (IR) divergences. Since the IR
poles in QCD become UV ones in Soft Collinear Effective Theory (SCET) ([46, 47, 48, 49, 50, 51,
52]), a suitable renormalisation constant can be used to absorb all residual IR poles to obtain finite
results. The resulting finite part is the matching coefficient required to perform N3LL resummation
in SCET for the pseudo-scalar Higgs boson production at the LHC [12].

3. Conclusions

To summarise, we have systematically computed the three loop QCD corrections to pseudo-
scalar operators in the effective theory where top quark is integrated out. We have used IBP and
LI identities along with the three loop master integrals that are availble to achieve this. Using
the universal structure of the IR poles, we could successfully rederive all the UV renormalisation
constants which are later used to obtain the UV finite three loop form factors in QCD. We have
also studied the leading transcendental behaviour of diagonal and non-diagonal form factors. Using
these form factors, we have determined the matching coefficient in SCET up to the three loop level.
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