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1. Introduction

More than 60 years has passed since Richard Feynman proposed a diagrammatic approach for
calculating perturbative processes in quantum field theories. Since then Feynman integrals calculus
has grown to a separate branch of the mathematical physics with a big community of scientists
making research in this exciting field. With no doubt we can say that none of the recent discoveries
in the high-energy particle physics could happen without precise theoretical calculations, which
are based on the Feynman integrals calculation techniques. It is also clear that such techniques
will play a key role for discoveries at the present and future high-energy colliders, hence their
development and further improvement are very important task.

Recent progress in computational techniques made possible to automate calculation of loop
and phase-space Feynman integrals. Among the most popular are integration-by-parts (IBP) re-
duction [1] and the method of differential equations [2, 3, 4]; for a detailed overview of these and
other methods see [5].

This paper is focused on the method of differential equations. In particular, we rely on the fact
that a solution to the system of DEs may be easily found as an €-series when a canonical form of this
system is known [6]. We consider a general algorithm to find a canonical form of a given system
of differential equations in one variable developed by Roman Lee [7]. This method describes
how (1) to find a Fuchsian form of the system using modified Moser reduction algorithm [8]; (2) to
normalize eigenvalues of the Fuchsian system in all singular points; and if those two steps succeed, !
(3) to finally transform the resulting system into canonical form. This method is quite general, and
despite our focus on systems for Feynman integrals, it can just as well be applied to reduction of
any ODE system that satisfies reducibility criteria.

Since no implementation of the Lee method was publicly available so far, we close this gap
by introducing Fuchsia — our open-source implementation of the Lee algorithm in Python based
on mathematical routines of the free computer algebra system SageMath [9]. Combined together
with Laporta algorithm [10] and its implementations [11, 12, 13, 14, 15, 16], these tools form a
powerful tandem for evaluating multiloop and phase-space Feynman integrals.

2. Master integrals for splitting functions

Before we demonstrate reduction steps that Fuchsia performs to find a canonical form of a
given system, let us consider next-to-leading order correction, i.e. &(a?2), to the time-like splitting
functions from e* e~ -annihilation in QCD. Master integrals for real and virtual contributions to
this process were calculated from difference equations in Mellin space in [17] and from differential
equations in x-space in [18]. In the next section we show how to find a canonical form of this
equations with the help of Fuchsia. This method can be further extended for calculating next-
to-next-to-leading order corrections, i.e. @ (o), to the time-like splitting functions as described
in [19], which are not completely know in the analytical form yet.

'In principle, the first step can always be done because Feynman integrals contain only logarithmic singularities.
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We start with a system of differential equations for real-virtual master integrals for NLO time-
like splitting functions discussed in [18] which has this form:

af(x,€)

dx

= M(x, &) f(x,€) (2.1)

where x represents the fractional momentum of the final-state parton transferred to the outgoing
hadron in the e"e™ -annihilation process, € is a dimensional regulator in m = 4 — 2¢ dimensions,
f(x,€) a column vector of unknown master integrals, and a coefficient matrix M(x, €), generated
with the help of LiteRed [13, 14], is given by

el 0 0 0 0 0

0 T 0 0 0 0

0 0 H%M 0 0 0
(I—x)x 29
0 78(1—(584-?82) sEl—Z)s)2 1278 0 0 (2.2)

x(1—x 1—x)x —Xx
0 e(1-5e+6e%)(3—x)  2e(1-2¢)>  2¢  (142e)(1-2%) 0
(1—x)2x3 , (1—x)2x2 (1—x)2x (1—x)x
_ 2g(1-5e+6¢7) 4 _ 1+4e
0 (1—x)x? 0 (I—x)x 0 X

For brevity, we do not show explicitly reduction for real-real contributions (considered in [18] as
well). Nevertheless, by analogy with real-virtual case we provide all the corresponding results in
the auxiliary files attached to this paper on arXiv.

3. Fuchsia and reduction to canonical form

The whole process of reduction to canonical form is divided into three consecutive steps: fuch-
sification, normalization, and factorization. Some variations to this scheme are possible, in partic-
ular to improve performance for more complicated systems; we do not consider these variations
here, as they do not conceptually change the process.

3.1 Fuchsification

The purpose of the fuchsification step is to find an equivalent Fuchsian system together with
a corresponding transformation. (A matrix is called Fuchsian if it does not contain irregular sin-
gularities at any value of x, including oo; in other words, Poincaré ranks in all singular points are
Zero).

Our initial matrix has three singular points, i.e., {0, 1,0}, with Poincaré ranks {2, 1,0}, which
means that it is not in Fuchsian form. We can find an equivalent matrix in Fuchsian form by ana-
lyzing generalized eigenvectors of residues of the initial matrix, constructing appropriate projector
matrices out of their products, and performing stepwise Moser reduction with [P-balance transfor-
mations between pairs of singular points.”> One possible equivalent Fuchsian system obtained this

2 A PP-balance between x; and x, is a basis change from f to f’, with f = (]I —-P+ cx:ﬁ ]P’) f.

X
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way looks like this:

2¢

=t 1;28 0 0 0 0 0
0 £ 4 Lk 0 0 0o 0
0 5(172152&1735) _8(11:2;‘)2 % +)1? 0 0 3.1
0 e(1-2¢)(1-3¢e)  2¢(1-2¢)? 2¢ 2 2
2e(1 (12—;c()fc 3) (T—x)x T (0—x)x T—x  x
e(1-2¢)(1-3¢ 4e 4e
0 (I—x)x 0 T 0=x)x 0 X

The reader can find the details of this construction in [7], but it is important to note that even if
the system is overall reducible to Fuchsian form, it is not always possible to construct a transforma-
tion that lowers Poincaré ranks at singular points without increasing Poincaré rank at some other
points. Sometimes the best we can do is to decrease Poincaré ranks in singular points at the expense
of increasing them in some (arbitrary chosen) set of regular points, effectively introducing apparent
singularities where there was none before. In practice these additional apparent singularities are
not a major problem, since they are subsequently removed during the normalization step. Still, we
try not to introduce them if possible to decrease intermediate expression sizes and increase overall
performance.

3.2 Normalization

The next step is normalization. To give you an idea of what is the aim at this stage, let us
consider eigenvalues of the residues of the Fuchsian matrix we obtained in the previous step, for
three singular points we have:

x=0 {1,1—-2¢e,1—-2¢,1—3¢, —2¢, —4¢}
x=1 {—2¢, —2¢, —2¢, —€,—¢,0}
X=o0 {4e,4e, —1+4e, —1+4e, —1+3¢, —1+2¢}

By analogy, corresponding eigenvalues for the case of real-real corrections are

x=—1 {—2¢e,—1,—1,1—2¢,-2,0,0,0}

x=0 {1—4e,1-3¢,—1—2¢,-2¢,1—-2¢,1-2¢,1,1}
x=1 {—2¢,-2¢,1,1,—-1—-2¢,1—-2¢,1—-2¢,—1}
X=o0 {2¢,2e, —2+3e, —2+4¢e,4¢e,4¢,2+4e, -2+ 6¢}

All these eigenvalues are in the form n + mé€, where n is integer. This is a commonly seen form in
practical systems. We say that matrix is normalized if n = O for all eigenvalues.

In order to normalize our Fuchsian matrix we again turn to using a series of P-balances con-
structed out of residue eigenvectors. This time we exploit the fact that an appropriately constructed
P-balance between x; and x, will shift one of the eigenvalues at x; by 1, and another at x; by
—1. Since sum of all eigenvalues is zero (because the sum of all residues is zero), by repeated
application of such balances we can reach a point when our matrix is normalized at all singular
points.
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In the case of our example we get:

26 2 0 0 0 0 0
0 - 0 0 0 0
0 0 £ -2 0 0 0
0 8(172187)(1738) B (1112; 22 % 0 0 3.2)
0 _28(1—2182()61—38) 28(}_)2{8) % 12—8x _ 2?5 0
0 _ 8(1—??}51—38) 0 4Tx 0 _%

Notice, that we rely on the fact that eigenvalues are integer in the € — 0 limit. This, of course,
is not always the case, but sometimes it is possible to fix such a situation by a clever change of
variables. Unfortunately, we have no automated solution here; if such a need arises, users must
come up with an appropriate substitution themselves.

3.3 Factorization

Though eigenvalues of the normalized matrix, found in the previous section, are proportional
to € the matrix itself is not. Therefore, the purpose of the final factorization step is to put a normal-
ized matrix to the canonical form, i.e.,

dg(x,€)
dx

This can normally be achieved by a constant (in x) transformation.

=¢€S(x) g(x,¢). (3.3)

In the case of our example, the matrix S(x) has this form

-2 0 000 O 2 0 0 000
03000 O 01 0 000
0 0 -200 O 1 0 0 1 000
S(x) = — + (3.4)
x] 0 0 000 O I1-x]10 35 -25200
0 0 00-20 0-35-50220
0 0 000 —4 0-70 0 400
where our new basis g(x, €) is defined as
f(x.€) =T(x,e)g(x,€)
and the transformation matrix T (x, €) is
—2x 0 0 0 0 0
70x
0 0 >0 0 0
T(x,€) = (1-2¢)* (3.5)
0 0 0o -2 0 O
1 210 2
T =x)x T (Tx)x 0 0 (I—x)x 0
0 0 0o o0 o0 2

Note that the canonical form we have computed here is not unique, and it will be different
depending on the precise sequence of reduction steps taken. In Fuchsia we allow users to influence
this process to a degree by supplying a random number generator seed; Fuchsia then selects re-
duction steps randomly based on that seed. By supplying different seeds, different (but still valid)
results may be obtained.
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4. Summary

In this report we have reviewed core functionality of Fuchsia, a program for reducing differen-
tial equations for Feynman master integrals to canonical form. Fuchsia is free and open-source: it
is build in Python using a free computer algebra system SageMath. To find the corresponding
analytical transformation Fuchsia uses a method proposed by Roman Lee [7], which consists of
three main computational steps: fuchsification, normalization, and factorization.

In additional, an optimization for block-triangular (or sparse) matrices is also implemented,
which allows Fuchsia to reduce relatively large matrices: reduction of a 74 x 74 matrix with 20 real
and complex singular points® and at most 3 x 3 coupled blocks takes about an hour on a laptop with
an Intel i5 CPU. In spite of that we still have difficulties to reduce somewhat smaller matrices with
complex singular points* due to the lack of support of factorization of polynomials with complex
coefficients in SageMath system, but we hope to improve this situation in the future. Another
promising direction for improvements could be support for multivariate polynomials and symbolic
singular points, which would allow to reduce differential equations for multi-scale Feynman master
integrals.
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