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1. Introduction

The calculation of higher order corrections in the Standard Model has become even more
important after the start of the LHC experimental program. Practically, this requires the computa-
tion of complicated massless and massive multi-loop and/or multi-leg Feynman integrals. If until
recently the calculation of two-loop corrections to most 2→ 2 processes relevant for LHC phe-
nomenology was considered an outstanding task, the situation has changed dramatically in the last
years, thanks to the development of diverse computational techniques. A prominent role in this has
been played by the discovery of integration-by-parts identities (IBPs) [1], the method of differential
equations [2–4], the introduction of the multiple polylogarithms (MPLs) [5–10], the definition of a
so-called canonical basis of master integrals [11], and the use of the Magnus exponentiation [12].
These techniques seem to be particularly well suited as long as we limit ourselves to massless cal-
culations. On the other hand, starting at two-loops, the increase in the number of internal masses
(together, of course, with the increase of scales in the problem), brings us very soon outside the
realm of MPL functions, forcing us to re-think our approach to the calculation of Feynman in-
tegrals [13–21]. The problem seems to be strictly intertwined with the apparent impossibility of
finding a basis of masters integrals, whose differential equations decouple in the limit d → 4 or,
equivalently, d→ 2n with n ∈ N [22]. We recall here also that algorithms for studying arbitrarily
complicated systems of differential equations – but limited for the moment to the univariate case –
have been proposed in [23] and in a more general framework in [24, 25].

In a recent paper the authors have shown that the study of the imaginary parts and related
dispersion relations satisfied by the Feynman amplitudes, within the differential equation frame,
can provide another useful practical tool for their evaluation, in the massless as well as in the mas-
sive case [26]. The imaginary parts of Feynman graphs can be obtained by the Cutkosky-Veltman
rule [27–29] or, more interestingly, one can try to compute it through the differential equations
that they satisfy. Often, in fact, their solution becomes substantially simpler when restricted to
the imaginary part only. In what follows we will illustrate the main points of the method and its
application to the calculation of the two-loop massive sunrise and the two-loop kite integral. We
refer to the original paper for details [26].

2. Combining differential equations and dispersion relations

Let us consider two Feynman amplitudes, say A(d;u) and B(d;u), both functions of the di-
mensions d and of a given external invariant u. Let us assume, for simplicity, that A(d;u) is simpler
than B(d;u), namely that A(d;u) can be obtained from B(d;u) by pinching one or more propa-
gators. As it is well known, we expect in this case that the differential equations for B(d;u) will
contain A(d;u) as inhomogeneous term, i.e. schematically

d
du

B(d;u) = h(d;u)B(d;u)+g(d;u)A(d;u)+other subtopologies. (2.1)

Now it is clear that, once the imaginary part of A(d;u), say ImA(d;u), is obtained, one has at
disposal the dispersive representation for A(d;u), namely an expression of the form

A(d;u) =
1
π

∫
dt ImA(d; t)

1
t−u

(2.2)
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(where the limit of integration have been skipped for ease of typing). Such a representation turns
out to be very useful when the amplitude A(d;u) appears within the inhomogeneous terms of some
other differential equation, regardless of the actual analytical expression of A(d;u), see (2.1). In-
deed, as the whole dependence on u is in the denominator (t−u), one can work out its contribution
by considering only that denominator. By inserting (2.2) into (2.1) one finds at once

d
du

B(d;u) = h(d;u)B(d;u)+
1
π

∫
dt ImA(d; t)

g(d;u)
t−u

+other subtopologies. (2.3)

such that the t-integration can be considered as, so to say, frozen, until the dependence on the vari-
able u (the variable of the differential equation) has been properly processed.
The importance of formula (2.3) should be self-evident. Suppose that we can compute the am-
plitude A(d;u) and that the latter evaluates to functions outside the realm of MPLs (for example,
integrals over elliptic integrals). If this is the case, the approach outlined here allows us to confine
the complexity of A(d;u) in the t-dependent integral only and to integrate the differential equation
for B(d;u) considering only the denominator (t−u). In particular, if nor the homogeneous solution
of (2.3) neither the remaining subtopologies introduce further functions beyond the MPLs, the in-
tegration over (t−u) will necessarily produce MPLs only1. As a first application of the procedure
outlined here we considered the two-loop massive sunrise and the kite integral, which are relevant
for the computation of the two-loop corrections to the electron self-energy in QED.

3. The kite integral family

Let us start defining the Feynman graph associated to the kite integral

I (n1,n2,n3,n4,n5) = -
@
@

@
@

�
�

�
�

p

=
∫

DdkDd l
1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

(3.1)

where two propagators are massless and two are massive, as follows

D1 = k2 +m2 , D2 = l2 , D3 = (k− l)2 +m2 ,

D4 = (k− p)2 , D5 = (l− p)2 +m2 , (3.2)

with −p2 = s and p2 > 0 when p is spacelike. We put m = 1 and define u = s/m2. Using IBPs we
find 8 independent master integrals which we choose as follows

M1(d;u) = I (2,0,2,0,0) , M2(d;u) = I (2,0,2,1,0) ,

M3(d;u) = I (0,2,2,1,0) , M4(d;u) = I (0,2,1,2,0) ,

M5(d;u) = I (2,1,0,1,2) , M6(d;u) = I (1,0,1,0,1) ,

M7(d;u) = I (2,0,1,0,1) , M8(d;u) = I (1,1,1,1,1) . (3.3)

1Here and in the following whenever we say MPLs, what we really have in mind is any function obtained by iterative
integrations over d-log forms only.
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M1, ..., M5 can be written in terms of HPLs only and we will not consider them anymore here,
referring to [26] for their explicit expressions. The remaining three integrals, M6, M7 and M8, are
instead the two master integrals of the two-loop sunrise graph (i.e. M6 and M7) and of the kite (M8)
and are more complicated. In order to simplify their integration, we choose a canonical basis for
the simple subtopologies as follows

f1(d;u) = 4(d−4)2 M1(d;u) , f2(d;u) = (d−4)2 uM2(d;u) ,

f3(d;u) = (d−4)2 uM3(d;u) , f4(d;u) = (d−4)2 (1−u)
[

1
2

M3(d;u)+M4(d;u)
]
,

f5(d;u) = (d−4)2 u2 M5(d;u) . (3.4)

Moreover, using general considerations based on the form of the imaginary part of the sunrise
amplitude for d ≈ 4 and d ≈ 2, together with Tarasov-Lee dimensional shifting identities [30, 31],
we build a basis for M6,M7,M8 which is particular well suited for their integration as Laurent series
in (d−4), see [22, 26] for details. The basis reads

h6(d;u) = g6(d−2;u) ,

h7(d;u) = g7(d−2;u) ,

f8(d;u) = (d−4)3 (d−3)uM8(d;u) , (3.5)

where

g6(d;u) = f6(d;u) ,

g7(d;u) =−2(d−4)2 (u−1)(u−9)M7(d;u)+
1
3
(u2−6u+21) f6(d;u)

+6(d−2)(d−4)2 (u−1)M6(d;u) . (3.6)

We stress here that in (3.5), g6(d;u) and g7(d;u) are taken in d−2 space-time dimensions.

3.1 The two-loop massive sunrise subtopologies

With the basis (3.5), the differential equations satisfied by the two master integrals of the
sunrise graph read

d
du

(
h6(d;u)
h7(d;u)

)
= B(u)

(
h6(d;u)
h7(d;u)

)
+(d−4)D(u)

(
h6(d;u)
h7(d;u)

)
+

(
0
1

)
, (3.7)

where the two matrices B(u), D(u) are defined as

B(u) =
1

6u(u−1)(u−9)

(
3(3+14u−u2) −9

(u+3)(3+75u−15u2 +u3) −3(3+14u−u2)

)
, (3.8)

D(u) =
1

6u(u−9)(u−1)

(
6u(u−1) 0

(u+3)(9+63u−9u2 +u3) 3(u+1)(u−9)

)
. (3.9)
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Note that the differential equations have regular singular points in u = 0, u = 1, u = 9 and u =

±∞. We are interested in the solution of (3.7) as Laurent series in (d− 4), in the four relevant
regions −∞ < u < 0, 0 < u < 1, 1 < u < 9 and 9 < u < ∞. To this aim, we need to first solve the
homogeneous system for d = 4, i.e. to find a set of two independent solutions, say (I1(u), I2(u))
and (J1(u),J2(u)), such that the matrix of the solutions

G(u) =

(
I1(u) J1(u)
I2(u) J2(u)

)
satisfies

d
du

G(u) = B(u)G(u) . (3.10)

Note that since Tr(B(u)) = 0 the Wronskian of the four solutions, W (u) = I1(u)J2(u)− I2(u)J1(u),
must be independent of u, i.e.

d
du

W (u) =
d
du

det(G(u)) = Tr(B(u)) det(G(u)) = 0 . (3.11)

Euler’s method of the variation of constants allows to write the general solution of a coupled
system of linear differential equations, provided that one has at disposal its homogeneous solution.
Since no general algorithm is known to solve the homogeneous system, we must resort to some
physical arguments to be able to proceed. We do this by noticing that, by taking the imaginary part
of (3.7), and setting d = 4, we are left with

d
du

(
Imh6(4;u)
Imh7(4;u)

)
= B(u)

(
Imh6(4;u)
Imh7(4;u)

)
, (3.12)

which implies that the four dimensional imaginary parts of the two master integrals h6 and h7 solve
the homogeneous system. The sunrise develops an imaginary part for u > 9, which can be readily
computed using Cutkosky-Veltman rules [27–29]. We get

1
π

Imh6(4;u) = I(0,u)

1
π

Imh7(4;u) =
1

(u−1)(u−9)

[
u2−6u+21

6
I(0,u)− 1

2
I(2,u)

]
, (3.13)

where the functions I(n,u) are defined as

I(n,u) =
∫ (
√

u−1)2

4
db

bn√
R4(b,u)

, (3.14)

and R4(d,u) is the fourth-order polynomial

R4(b,u) = b(b−4)((
√

u−1)2−b)((
√

u+1)2−b) . (3.15)

As showed explicitly in [14, 26], these integrals are not all linearly independent, but instead, using
integration-by-parts, one can prove that there are only two master integrals, which we choose as
I(0,u) and I(2,u). The latter can be related by an elementary change of variables to the complete
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elliptic integrals of first and second kind [14]. Using (3.13) it is straightforward to prove that they
fulfil Eqs. (3.10), such that, for 9 < u < ∞, we can define a first homogeneous solution as

I(9,∞)
1 (u) = I(0,u) , I(9,∞)

2 (u) = I(2,u) . (3.16)

Taking inspiration from the solution above, one can build up a second pair of independent
functions as follows

J(9,∞)
1 (u) =

∫ 4

0
db

1√
−R4(b,u)

, J(9,∞)
2 (u) =

∫ 4

0
db

b2√
−R4(b,u)

+
π

3
(u+3), (3.17)

where it is a simple exercise to verify that

d
du

(
J(9,∞)

1 (u)
J(9,∞)

2 (u)

)
= B(u)

(
J(9,∞)

1 (u)
J(9,∞)

2 (u)

)
, (3.18)

as required. Summarising we have found two pairs of independent real valued solutions, valid in
the range 9 < u < ∞, such that their matrix

G(9,∞)(u) =

(
I(9,∞)
1 (u) J(9,∞)

1 (u)
I(9,∞)
2 (u) J(9,∞)

2 (u)

)
fulfils

d
du

G(9,∞)(u) = B(u)G(9,∞)(u) . (3.19)

In ref. [26] similar solution matrices are constructed in all remaining regions, −∞ < u < 0,
0 < u < 1 and 1 < u < 9, and the analytic continuation from one region to the other is explicitly
worked out. In order to indicate the matrix of solution in a generic region a < u < b, we use the
notation G(a,b)(u). With the normalization given above, in every region (a,b) the Wronskian of the
solutions is independent of u, as expected, and can be computed to be

I(a,b)1 (u)J(a,b)2 (u)− I(a,b)2 (u)J(a,b)1 (u) = π, (3.20)

which is nothing but the Legendre relation among complete elliptic integrals of first and second
kind. We are now ready to use Euler’s method of the variation of constants in order to write the
complete solution of the system Eq.(3.7). In what follows we will drop the superscripts (a,b) from
all formulas for simplicity, writing for instance G(u) instead of G(9,∞)(u), since the manipulations
do not depend on those. We will restore the dependence once we specialize the solution in any
given region. We start performing the rotation(

h6(d;u)
h7(d;u)

)
= G(u)

(
m6(d;u)
m7(d;u)

)
, (3.21)

such that the new functions m6(d;u) and m7(d;u) fulfil the equations

d
du

(
m6(d;u)
m7(d;u)

)
= (d−4)

1
π

M(u)

(
m6(d;u)
m7(d;u)

)
+

1
π

(
−J1(u)
I1(u)

)
, (3.22)

with

M(u) = π G−1(u)D(u)G(u) , and G−1(u) =
1
π

(
J2(u) −J1(u)
−I2(u) I1(u)

)
. (3.23)

5
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Using the condition on the Wronskian (3.20), one can show that

I1(u)
d J1(u)

du
− J1(u)

d I1(u)
du

=−3π

2
1

u(u−1)(u−9)
, (3.24)

which allows to simplify the matrix M(u) and write is as a total differential. Its entries read

M11(u) =−
d

d u

(
(u+3)2

6
I1(u)J1(u)

)
+

π

4

(
2

u−9
+

2
u−1

− 1
u

)
,

M12(u) =−
d

d u

(
(u+3)2

6
I1(u) I1(u)

)
,

M21(u) = +
d

d u

(
(u+3)2

6
J1(u)J1(u)

)
,

M22(u) = +
d

d u

(
(u+3)2

6
I1(u)J1(u)

)
+

π

4

(
2

u−9
+

2
u−1

− 1
u

)
. (3.25)

Written in this form, the iterative structure of the solution in powers of (d−4) becomes manifest.
Eqs. (3.22) with the matrix (3.25) are now ready to be expanded in Laurent series in (d − 4),
integrated and matched to proper boundary conditions. We skip all mathematical details here and
report the final solution of the integration. We expand the master integrals as follows

h j(d;u) =
∞

∑
α=0

(d−4)α h(α)
j (u) , for j = 6,7 ,

such that the first non-zero order is (d−4)0, and the solution for the master integrals, valid in the
region 0 < u < 1, reads

h(0)6 (u) =
1
π

[
J(0,1)1 (u)

∫ u

0
dt I(0,1)1 (t)− I(0,1)1 (u)

(∫ u

0
dt J(0,1)1 (t)−Cl2

(
π

3

))]
,

h(0)7 (u) =
1
π

[
J(0,1)2 (u)

∫ u

0
dt I(0,1)1 (t)− I(0,1)2 (u)

(∫ u

0
dt J(0,1)1 (t)−Cl2

(
π

3

))]
, (3.26)

where the Clausen function is defined as

Cl2(x) =−
∫ x

0
ln
∣∣∣2sin

y
2

∣∣∣dy =
i
2
(
Li2(e−i x)−Li2(ei x)

)
. (3.27)

By analytically continuing the solution above threshold, i.e. for u > 9, we find

h(0)6 (u) = πJ(9,∞)
1 (u)+

1
π

[
J(9,∞)

1 (u)
∫ u

9
dt I(9,∞)

1 (t)− I(9,∞)
1 (u)

(∫ u

9
dt J(9,∞)

1 (t)+5Cl2
(

π

3

))]
+ iπ I(9,∞)

1 (u) ,

h(0)7 (u) = πJ(9,∞)
2 (u)+

1
π

[
J(9,∞)

2 (u)
∫ u

9
dt I(9,∞)

1 (t)− I(9,∞)
2 (u)

(∫ u

9
dt J(9,∞)

1 (t)+5Cl2
(

π

3

))]
+ iπ I(9,∞)

2 (u) , (3.28)

6
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recovering the correct results for the imaginary parts. Finally, we can write an alternative represen-
tation for the solution (3.26) as a dispersion relation

h(0)6 (u) =
∫

∞

9

dt
t−u− iε

I(9,∞)
1 (t) , h(0)7 (u) =

1√
3

Cl2
(

π

3

)
+u
(

5
6
+
√

3Cl2
(

π

3

))
+u2

∫
∞

9

dt
t2(t−u− iε)

I(9,∞)
2 (t) , (3.29)

where for h(0)7 (u) we have used a doubly subtracted dispersion relation and fixed the subtraction
constants matching (3.29) to (3.26) for u = 0+ and u = 1−.

The same exercise can be repeated at order (d−4), obtaining relatively simple results, which
we do not report here for brevity. We explicitly write down only the dispersive representation for
the solution, as it will be used for the integration of the kite integral [26]

h(1)6 (u) =
∫

∞

9

dt
t−u− iε

(
1
4

I(9,∞)
1 (t) l̄(t)− π

2
J(9,∞)

1 (t)
)

(3.30)

h(1)7 (u) =
√

3
[

1
6

Cl2
(

π

3

)
ln(3)− 1

4
Ls3

(
2π

3

)
− π3

72

]
+u

[
− 5

12
+
√

3
(

1
2

Cl2
(

π

3

)
ln(3)− 3

4
Ls3

(
2π

3

)
+

14
27

Cl2
(

π

3

)
− π3

24

)]
+u2

∫
∞

9

dt
t2(t−u− iε)

(
1
4

I(9,∞)
2 (t) l̄(t)− π

2
J(9,∞)

2 (t)+
(t +3)2

6
I(9,∞)
1 (t)

)
, (3.31)

where, for t > 9,
l̄(t) = 2ln(t−1)+2ln(t−9)− ln(t) , (3.32)

and we introduced the generalization of the Clausen function

Lsn(θ) =−
∫

θ

0
dy
[
ln
(

2 sin
( y

2

))]n−1
. (3.33)

3.2 The kite integral

Equipped with formulas (3.29) (3.30) and (3.31), we are now ready to study the differential
equation for the kite. f8(d;u), Eq. (3.5), satisfies the linear first order differential equation

d
du

f8(d;u) = (d−4)
(

1
u−1

− 1
2u

)
f8(d;u)+

(d−4)3

24

(
1− 8

u−1

)
h6(d;u)

+
(d−4)
u−1

(
−1

8
f1(d;u)+2 f3(d;u)+ f4(d;u)

)
+(d−4)

1
u

f5(d;u) , (3.34)

where f3(d;u), f4(d;u) and f5(d;u) are simple master integrals espressible in terms of HPLs only,
while h6(d;u) is one of the sunrise integrals computed in the previous section. Expanding every-
thing in Laurent series, we find for the first three orders, after fixing the boundary conditions

f (0)8 (u) = 0 , f (1)8 (u) = 0 , f (2)8 (u) = 0 . (3.35)

7
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The first non trivial order is the third one, which contains as inhomogeneous term the order zero
of the sunrise graph. Using the dispersive solution for the latter (3.29), integrating explicitly over
the simple denominator (t− u) and fixing the boundary condition, we are left with an extremely
compact result, again valid for 0 < u < 1

f (3)8 (u) =
1
8

G(0,1,1,u)− 1
16

G(1,0,1,u)− π2

96
G(1,u)

− 1
24

∫
∞

9
dt I(9,∞)

1 (t)
(

1− 8
t−1

)
G(t,u) . (3.36)

We stress that the solution contains only multiple-polylogarithms of maximum weight 3 together
with integrals over elliptic integrals and logarithms. It is relatively straightforward to repeat the
same exercise one order higher obtaining

f (4)8 (u) =
π2

192
(G(0,1,u)−2G(1,1,u))+

(
ζ3

32
+

π

12
Cl2
(

π

3

))
G(1,u)− 3

16
G(0,0,1,1,u)

− 1
32

G(0,1,0,1,u)+
3
8

G(0,1,1,1,u)+
1
32

G(1,0,0,1,u)− 1
16

G(1,1,0,1,u)

− 1
96

G(1,u)
∫

∞

9
dt I(9,∞)

1 (t) l̄(t)+
π

48

∫
∞

9
dt J(9,∞)

1 (t)
(

1− 8
t−1

)
G(t,u)

− 1
96

∫
∞

9
dt I(9,∞)

1 (t)
(

1− 8
t−1

)
l̄(t)(G(t,u)−G(1,u))

+
1

48

∫
∞

9
dt I(9,∞)

1 (t)
(

1− 8
t−1

)
(G(0, t,u)−2G(1, t,u)) , (3.37)

where l̄(t) is defined in (3.32). Again the structure of the solution is very simple. It contains
multiple-polylogarithms of weight 4, together with integrals over elliptic integrals and polyloga-
rithms of weight 2. Our formalism allows to straightforwardly continue the results in any relevant
region and, in particular, above the three massive particle threshold u > 9. As exemplification,
defining v = (u−1)/8, we find for u > 9

1
π

Im f (3)8 (u) =
1
16

G(0,−1/8,v)− 1
8

G(−1/8,0,v)− 3
8

ln(2)G(−1/8,v)

+
1
24

∫ u

9
dt I(9,∞)

1 (t)
(

1− 8
t−1

)
. (3.38)

4. Conclusions and outlook

We have shown that the study of the imaginary part and of the corresponding dispersion re-
lations of Feynman amplitudes within the differential equation method provides a powerful tool
for handling their complexity, in particular when the solution lives outside the space of multiple
polylogarithms. We have studied in detail the case of the two-loop massive sunrise graph and of
the kite integral, relevant for the computation of the QED corrections to the electron propagator.
We have derived compact results for the first two orders of the expansion in (d− 4), and showed
how to continue them analytically in all relevant regions of the phase space. Our results are partic-
ularly well suited for numerical evaluation, as they involve at most one-fold integrals over elliptic
integrals and multiple polylogarithms. An application of these techniques to more involved three-
and four-point functions is currently underway.
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