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We overview recent results on the mathematical foundations of Cutkosky rules. We emphasize

that the two operations of shrinking an internal edge or putting internal lines on the mass-shell are

natural operation on the cubical chain complex studied in the context of geometric group theory.

This together with Cutkosky’s theorem regarded as a theorem which informs us about variations

connected to the monodromy of Feynman amplitudes allows for a systematic approach to normal

and anomalous thresholds, dispersion relations and the optical theorem. In this report we follow

[1] closely.
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Cutkosky Rules from Outer Space Dirk Kreimer

1. Motivation

Understanding of the analytic structure of the contribution of a graph to a Feynman amplitude,

a time-honored problem [2], is related to an analysis of its reduced graphs and the graphs in which

internal edges are on the mass-shell. The former case relates to graphs in which internal edges

shrink. The latter case relates to graphs with cut edges. The set of cut edges is uniquely determined

by the choice of a spanning forest for the graph: such a spanning forest defines a unique set of

edges connecting distinct components of the forest. It is those edges we will put on the mass-shell.

Pairs of graphs and a chosen ordered spanning tree or forest deliver the cubical chain complex

[3].

A given ordering of the edges of the spanning tree T defines a sequence of spanning forests F ,

and to any pair (Γ,F) for fixed Γ we can associate:

-a reduced graph ΓF obtained by shrinking all edges of Γ to length zero which do not connect

different components of the spanning forest

-a cut graph ΓF where all those edges connecting different components are put on-shell, so are

marked by a Cutkosky cut,

-the set of graphs GF = Γ−EΓF
obtained from Γ by removing the edges which connect distinct

components of the spanning forest.

Such data define a cell-complex. With it they define a set of lower triangular matrices, one for

each ordering of the edges in T , which allow to analyse a graph amplitude from its reduced graphs

and the variations obtained by putting internal edges on-shell.

1.1 Results

A sequence of cuts (edge sets εi determines from i-component forests, i ≥ 2)

ε2 → ε3 → ··· → εvΓ

will shift the normal threshold s0(ε2) associated with a chosen cut ε2 to anomalous thresholds

s0(ε2)→ s1(ε3)→ ··· → svΓ−2(εvΓ).

The resulting sequence of anomalous thresholds si(εi+2), i > 0 is a sequence of values for a

channel variable s defined by ε2. They are computed from the divisors associated to εi+2. The latter

are functions of all kinematical variables. For example, for the one-loop triangle the divisor in C
3

associated to ε3 is a simple function of

λ (p2
1, p2

2, p2
3) = p1.p

2
2 − p2

1 p2
2 = p2.p

2
3 − p2

2 p2
3 = p3.p

2
1 − p2

3 p2
1, p1 + p2 + p3 = 0.

The three representations of λ (p2
1, p2

2, p2
3) allow to compute s1(ε3) for the three choices of a channel

variable s = p2
3 or s = p2

1 or s = p2
2 respectively.

As a result, to a graph Γ we can assign a collection of lower triangular matrices MΓ
i with the

following properties:

i) All entries in the matrix correspond to well-defined integrable forms under on-shell renormaliza-

tion conditions.

ii) Anomalous thresholds si are determined from properties of graph polynomials. They provide

1



P
o
S
(
L
L
2
0
1
6
)
0
3
5

Cutkosky Rules from Outer Space Dirk Kreimer

lower boundaries for dispersion integrals associated to these integrable forms.

iii) Along the diagonal in the matrices MΓ
i we find leading threshold entries: all quadrics for all

edges in a graph are on the mass-shell.

iv) The variation of a column in MΓ
i wrt to a given channel is given by the column to the right.

v) The subdiagonal entries (MΓ
i )k,k−1 are determined from the diagonal entries (MΓ

i )k−1,k−1 and

(MΓ
i )k,k via a dispersion integral. This gives (k− 1) two-by-two matrices each of which has an

interpretation via the optical theorem. This hence determines the first subdiagonal.

vi) Continuing, all subdiagonals and hence the whole matrix (MΓ
i )r,s is determined via iterated

dispersion. This answers the question how to continue the optical theorem beyond two-point func-

tions.

2. The cubical chain complex

We follow [3]. Consider a pair (Γ,T ) of a bridge free graph Γ and a chosen spanning tree T

for it. Assume T has k edges. Consider the k-dimensional unit cube. It has origin (0, · · · ,0) and k

unit vectors (1,0, · · · ,0), . . ., (0, · · · ,0,1) form its edges regarded as 1-cells. A change of ordering

of the edges of T permutes those edges.

The origin is decorated by a rose on |Γ| petals, and the corner (1,1, · · · ,1) decorated by (Γ,VΓ),

with k = |VΓ|−1, and we regard VΓ as a spanning forest consisting of k+1 distinct vertices.

The complex is best explained by assigning graphs as in the following example.

a

b

c

a

b

c

a

b

c

a

b

c

a ∪ b ∪ c

a ∪ c
b

a

b ∪ c

a
b ∪ c

a ∪ c b

1

2

3 4

The cell is two-dimensional as each of the five spanning trees of the graph Γ, the dunce’s cap graph,

in the middle of the cell has length two.

We have chosen a spanning tree T provided by the edges e1 and e3, indicated in red. The

boundary of our two-dimensional cell has four one-dimensional edges, bounded by two of the four

0-dimensional corners each.
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To these lower dimensional cells we assign graphs as well as indicated.

The spanning tree has length two and so there are 2 = 2! orderings of its edges, and hence two

lower triangular 3×3 matrices MΓ
i which we can assign to this cell.

They look as follows:

a ∪ cb

a
b

c

a
b

c

a ∪ cb

a ∪ b ∪ c

a
b

c

1

2

3 4

a
b ∪ c

a

b

c

a b ∪ c

a
b

c

a ∪ b ∪ c

a
b

c

1

2

3 4

M
Γ
1 M

Γ
2

These square matrices are lower triangular. Note that we have cuts which separate the graph into

two components determining a normal threshold which appears already in a reduced graph on the

diagonal, and in the lower right corner a cut into three components, which determines an anomalous

threshold. All these cuts determine variations, as stated in Cutkosky’s theorem [1].

3. Cutkosky’s theorem

We quote from [1] where you find details. For a graph Γ and a choosen spanning forest F we

let the quotient graph Γ′′ -the reduced graph- be the graph obtained by shrinking all edges e ∈ E ′

of Γ which do not connect distinct components of F , so E ′ = EΓ−E ′′, and E ′′ all edges of Γ which

do connect distinct components of F .

Assume the reducedgraph Γ′′ has a physical singularity at an external momentum point p′′,
i.e. the intersection

⋂

e∈E ′′ Qe of the propagator quadrics associated to edges in E ′′ has such a

singularity at a point lying over p′′. Let p be an external momentum point for Γ lying over p′′.
Then the variation of the amplitude I(Γ) around p is given by Cutkosky’s formula

var(I(Γ)) = (−2πi)#E ′′
∫

∏e∈E ′′ δ+(ℓe)

∏e∈E ′ ℓe

.

4. Anomalous thresholds

Let us come back to a generic graph Γ. We want to determine anomalous thresholds. With

their help, dispersion relations can be established when real analycity in kinematical variables can

be established.
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We analyse the Landau singularities of Γ in terms of Γ/e, where e is such an edge. To com-

pletely analyse the graph, we have to consider all possibilities to shrink it edge after edge (the

generalization to multiple edges is in [1]).

We have for the second Symanzik polynomial Φ

Φ(Γ) =

=:X
︷ ︸︸ ︷

Φ(Γ/e)+Ae

=:Y
︷ ︸︸ ︷
{

Φ(Γ− e)−m2
eψ(Γ/e)

}
−A2

e

Z
︷ ︸︸ ︷

m2
eψ(Γ− e) .

Solving Φ(Γ) = 0 for Ae is a quadratic equation with coefficients X ,Y,Z. Note that Z > 0 is

independent of kinematical variables, while X ,Y depend on momenta and masses. In particular,

for a chosen channel variable s we can write X = sXs +N, with Xs independent of kinematics and

N a constant in the channel variabel s. It depends on other kinematic variables though. In terms of

parametric variables, X ,Y are functions of the parametric variables of the reduced graph.

The above quadratic equation has a discriminant D =Y 2+4XZ, and we find a physical Landau

singularity for positive Y and vanishing discriminant D = 0. Define Y0 := Y (p
Γ/e

A ,{Q,M}) to be

the evaluation of Y by evaluating parametric variables at the point of the Landau singularity for the

reduced graph.

The condition D = 0 allows to determine the anomalous threshold from

s({A},{Q,M}) = Y 2 −4ZN

4ZXs

,

minimizing over parametric variables Ae ≥ 0.

Let TΓ
s be the set of all ordered spanning trees T of a fixed graph Γ which allow for the same

associated channel variable s.

We have the following result.

i) A necessary and sufficient condition for a physical Landau singularity is Y0 > 0 with D = 0.

ii) The corresponding anomalous threshold sF for fixed masses and momenta {M,Q} is given as

the minimum of s({a,b},{Q,M}) varied over edge variables {a,b}. It is finite (sF > −∞) if the

minimum is a point inside p ∈ P
eΓ−1 in the interior of the integration domain Ai > 0. If it is on the

boundary of that simplex, sF =−∞.

iii) If for all T ∈ TΓ
s and for all their forests (Γ,F) we have sF >−∞, the Feynman integral ΦR(Γ)(s)

is real analytic as a function of s for s < minF{sF}.

iv) For Y > 0 and X < 0, both zeroes of Φ(Γ) = 0 appear for Ae > 0. For Y > 0 and X > 0, only

one zero is inside the domain of integration. As a result for X = 0 corresponding to the threshold

provided by the reduced Γ/e we have a discontinuity.

5. Example

We consider the triangle graph ∆. In fact, we augment it with one of its three possible spanning
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trees, say on edges e2,e3, so ET = {e2,e3}. The corresponding cell in the cubical chain complex is

a

b

c

a

b

c

a

b

c

a

b

c

a b ∪ c

a
b ∪ c

a ∪ b ∪ c

b
b

a ∪ c a ∪ c

1

2

3

1

2

3

1

2

3

1

2

3

1

2

1

1

2

1

3

1

3

(5.1)

For the Cutkosky cut we choose two of the three edges, say ε2 = {e1,e2}. This defines the

channel s = p2
a and the matrix M∆

1 .

The other cut in that matrix is the full cut separating all three vertices.

We give M∆
1 in the following figure:

M∆
1 =

1

1

2

1

2

1

2

3

1

2

3

1

2

3

a ∪ b ∪ c

a
b ∪ c

a

b

c

a

b

c

a

b

c

a b ∪ c

We now calculate:

Φ∆ =

=ΦΓ/e3
︷ ︸︸ ︷

p2
aA1A2 − (m2

1A1 +m2
2A1)(A1 +A2)

+A3((p2
b −m2

3 −m2
1)A1 +(p2

c −m2
1 −m2

3)A2)−A2
3m2

3,

so

Φ∆ = Φ∆/e3
+A3Y −A2

3m2
3

=1
︷ ︸︸ ︷
ψ∆−e1

,
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as announced:

X = Φ∆/e3
, Y =

=:l1
︷ ︸︸ ︷

(p2
b −m2

3−m2
1)A1 +

=:l2
︷ ︸︸ ︷

(p2
c −m2

1 −m2
3)A2, Z = m2

3.

We have Y0 = m2l1 +m1l2, and need Y0 > 0 for a Landau singularity.

Solving Φ(∆/e3) = 0 for a Landau singularity determines the familiar physical threshold in

the s = p2
a channel, leading for the reduced graph to

pQ : s0 = (m2 +m3)
2, pA : A1m1 = A2m2. (5.2)

We let D = Y 2 +4XZ be the discriminant. For a Landau singularity we need

D = 0.

We have

Φ∆ =−m2
3

(

A3 −
Y +

√
D

2m2
3

)(

A3 −
Y −

√
D

2m2
3

)

, (5.3)

where Y,D are functions of A1,A2 and m2
1,m

2
2,m

2
3,s, p2

b, p2
c . Note that at D = 0 we have

2m2
3A3 = A1l1 +A2l2,

which determines a co-dimension one (a line) hypersurface of P2. Finding the anomalous thresold

determines a point on this line (it fixes the ratio A1/A2), and hence the anomalous threshold deter-

mines a point in P
2. We can write

0 = D = Y 2 +4Z(sA1A2 −N),

with N = (A1m2
1 +A2m2

2)(A1 +A2) s-independent.

This gives

s(A1,A2) =
4ZN − (A1l1 +A2l2)

2

4ZA1A2

=:
A1

A2

ρ1 +ρ0 +
A2

A1

ρ2. (5.4)

Define two Kallen functions ρ1 = −λ1 = −λ (p2
b,m

2
1,m

2
3) and ρ2 = −λ2 = −λ (p2

c ,m
2
2,m

2
3).

Both are real and non-zero off their threshold or pseudo-threshold.

Then, for

ρ1 > 0, ρ2 > 0,

we find the threshold s1 at

s1 = (m1 +m2)
2 +

4m2
3(
√

λ2m1 −
√

λ1m2)
2 − (

√
λ1l2 +

√
λ2l1)

2

4m2
3

√
λ1

√
λ2

. (5.5)

On the other hand for the coefficients of ρ1 < 0 and/or ρ2 < 0 we find a minimum

s1 =−∞, (5.6)

along the boundaries A1 = 0 or A2 = 0.
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The domains Y > 0,X < 0 and Y > 0,X > 0 determine the domains of parametric integration

for the variation prescribed by Cutkosky’s theorem, whilst the normal and anomalous threshold

(when finite) determine the lower boundaries of the dispersion integrals needed to reconstruct the

function from its variation.

Let us now discuss the triangle in more detail. It allows three spanning trees on two edges

each, so we get six matrices M∆
i , i = 1, . . . ,6 altogether, by having two possibilities to order the two

edges for each spanning tree.

The six matrices M∆
i come in groups of two for each spanning tree.

For each of the three spanning trees we get a cell as in (5.1).

The boundary operator for such a cell in the cubical cell complex of [3] is the obvious one

stemming from co-dimension one hypersurfaces at 0 or 1 with suitable signs. So the square pop-

ulated by the triangle ∆ in (5.1) has four boundary components, the edges populated by the four

graphs as indicated. Those four edges are the obvious boundary of the square.

If we now consider all graphs in (5.1) as evaluated by the Feynman rules, we can consider for

a given cell a boundary operator which replaces evaluation at the xe = 0-hypersurface by shrinking

edge e, and evaluation at the xe = 1-hypersurface by setting edge e on the mass-shell.

Then, to check that this is a boundary operator for the amplitudes defined by the graphs in (5.1)

we need to check that the amplitudes for the four graphs at the four corners are uniquely defined

from the amplitudes of the graphs at the adjacent edges: for example, the imaginary part of the

amplitude of the graph on the left vertical edge is related to the amplitude of the graph at the upper

left corner: This imaginary part must be also obtained from shinking edge e3 in the graph on the

upper horizontal edge by setting A3 to zero in the integrand and integrating over the hypersurface

A3 = 0 of the integration simplex σ∆. This is indeed the case, and similar checks work for all other

corners.

In summary, the analytic structure of Feynman amplitudes realized the structure of the cubical

chain complex. The latter is highly non-trivial. Its further study in the conext needed for physics

will inform our understanding of amplitudes considerably. Future work will be dedicated in under-

standing the relation between the monodromy of physical singularities and the fundamental group

underlying Outer Space as used in [3].
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