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1. Introduction

The properties of the top quark can be measured with unprecedented precision at a future
electron-positron collider, like the proposed International Linear Collider [1]. A key quantity in
this respect is the total production cross section near the top-antitop threshold.

In order to match the projected experimental precision, it is mandatory to take into account
the combined effects of bound-state interactions and higher-order perturbative corrections. These
effects are incorporated systematically in the effective field theory framework of potential non-
relativistic quantum chromodynamics (PNRQCD) [2]. Within PNRQCD, the cross section is ex-
panded simultaneously in the small non-relativistic velocity v and the strong coupling constant αs,
adopting the power counting αs ∼ v� 1. The exchange of Coulomb gluons yields contributions
scaling with powers of αs/v∼ 1, which are resummed to all orders.

The PNRQCD Lagrangian at a given order can be derived systematically by matching to non-
relativistic quantum chromodynamics (NRQCD) [3], which in turn is obtained by matching to the
fundamental theory of QCD.1 The top-antitop production cross section within PNRQCD has been
computed to third order [4]; the power counting up to this order is given by

σ ∼ v∑
k

(
αs

v

)k

×


1 LO

αs,v NLO

α2
s ,αsv,v2 N2LO

α3
s ,α

2
s v,αsv2,v3 N3LO

. (1.1)

Corrections beyond QCD can be taken into account by generalising the aforementioned two-
step matching procedure to the case where the fundamental theory is given by the full Standard
Model. It is customary to adopt the power counting α ∼ α2

s for the QED coupling constant α .
For the Higgs sector, we will count powers of the Yukawa coupling to be of the same order as the
strong coupling constant, i.e. yt ∼ αs. The value of the Higgs boson mass mH lies between the hard
scale given by the top quark mass mt and its nonrelativistic momentum mtv, which defines the soft
scale. Since the numerical value is much closer to the former, we use the power counting mH ∼mt .

2. Classification of electroweak corrections

In the following we will consider different classes of effects beyond QCD. Apart from the
electroweak corrections to the production all of them are discussed in more detail in [5].

2.1 Higgs effects

In a first step, we incorporate Higgs effects by adding

LHiggs =
1
2
(∂µH)2− 1

2
m2

HH2−
√

λ

2
mHH3− λ

4
H4− yt√

2
ttH (2.1)

with λ =
παm2

H
2m2

W s2
w

to the QCD Lagrangian. Corrections then arise from the exchange of a virtual
Higgs boson between the top and the antitop (see figure 1).

1At electron-positron colliders, quark-antiquark pairs are mainly produced via a virtual photon or Z boson. Thus,
the corresponding vertices should also be added to the QCD Lagrangian.
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Figure 1: Example diagrams for Higgs corrections to tt̄ production. Left: N2LO correction to the production
vertex. Right: N3LO potential correction. Grey lines indicate nonrelativistic (anti-)top quarks near their mass
shell. The shaded area represents the leading-order colour Coulomb interaction.

A Higgs boson with a hard momentum (of the order of the Higgs boson mass), can only be
exchanged if the initially produced top-antitop pair is far off shell. Within the effective theory, this
constitutes a correction to the production vertex of the nonrelativistic top-antitop pair. A single
Higgs exchange contributes with a factor of y2

t and is thus a N2LO correction. We also take into
account the exchange of an additional gluon, which contributes at N3LO. These corrections were
calculated in [6, 7, 8, 9].

For a Higgs exchange between a top-antitop pair near mass shell, the Higgs momentum q ∼
mtv is much smaller than its mass and thus can be neglected inside the Higgs propagator. The Higgs
exchange then corresponds to a local correction δHV = −y2

t /(2m2
t ) ∼ v2/m2

t to the interaction
potential. The leading-order colour Coulomb potential is proportional to αs/q2 ∼ 1/(vm2

t ). Thus,
the Higgs potential is suppressed by a factor v3 with respect to the leading-order potential and first
contributes at N3LO.

2.2 QED Coulomb potential

In order to take into account QED corrections, we add

LQED =−1
4

FµνFµν + ∑
l∈leptons

ψ li/∂ψl− ∑
f∈fermions

e f ψ f /Aψ f (2.2)

to the Lagrangian. The dominant correction is then given by the QED Coulomb potential α/q2,
which is a NLO effect.

2.3 Nonresonant production

Since the top quark is unstable, its decay into a W+b pair has to be incorporated consistently
into our framework. Within unstable particle effective theory [10, 11], the cross section is given
as a sum of resonant top-antitop production and nonresonant production including top decays. At
NLO it suffices to consider nonresonant production of the final states tW−b̄ and t̄W+b, which was
computed in [12]. The diagrams contributing to the latter final state are shown in figure 2.

2.4 P-wave production

Due to the axialvector coupling of the Z boson the top-antitop pair can be produced in a P-
wave state. P-wave production starts to contribute at N2LO and has been found to be numerically
small [13, 14, 15, 16].
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Figure 2: Non-resonant production of t̄ W+b. Grey lines indicate on-shell antitop quarks.

2.5 Electroweak production corrections

At N2LO, the full Standard Model Lagrangian induces further corrections to the resonant top-
antitop production, which have been calculated in [6, 7, 17, 8]. Sample diagrams are shown in
figure 3. To obtain consistent predictions, these have to be combined with the N2LO nonresonant
production, where only partial results are known [18, 19, 20].
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Figure 3: Sample diagrams contributing to the electroweak production corrections. Grey lines indicate
on-shell (anti-)top quarks.

3. Phenomenological impact

Figure 4 demonstrates the combined effect of the corrections discussed in section 2 on the total
top-antitop production cross section. Excluding the electroweak production corrections outlined in
section 2.5, we see a notable change in the cross section of up to 10%. Especially in the peak region
the change is significantly larger than the pure QCD scale uncertainty. Once we include the N2LO
electroweak corrections (excluding N2LO nonresonant production), the cross section drops again
visibly, to the level of the pure QCD result or even below. While the current “full” result does not
correspond to a fully consistent theory description, it may indicate the magnitude of the combined
N2LO nonresonant and electroweak production corrections.

In figure 5 we compare the theory uncertainty estimated from scale variation between 50GeV
and 350GeV to the change in the cross section upon variation of various input parameters. The
size and shape of the variation suggests that the top-quark mass in the potential-subtracted (PS)
scheme [21] can be determined to an accuracy of better than 100 MeV at a future high-energy
electron-positron collider. This estimate is backed up by a recent preliminary experimental analy-
sis [22]. In contrast, the cross section is not very sensitive to modifications of the Yukawa coupling
and the change in the shape is hard to distinguish from the one induced by a variation of the strong
coupling constant.

3



P
o
S
(
L
L
2
0
1
6
)
0
4
9

Electroweak corrections to top pair production near threshold Andreas Maier

0

0.2

0.4

0.6

0.8

1

1.2
σ
[p
b
]

340 342 344 346 348√
s [GeV]

QCD

no W,Z

full

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

σ
/σ

(µ
=

80
G
eV

)

340 342 344 346 348√
s [GeV]

QCD

no W,Z

full

Figure 4: Cross section for tt̄ production with mPS
t (20GeV) = 171.5GeV ,Γt = 1.33GeV ,mH =

125GeV ,αs(mZ) = 0.1185 ,α(mZ) = 1/128.944. Error bands result from scale variation between 50GeV
and 350Gev. The dotted blue line shows the N3LO QCD-only cross section, whereas for the dashed green
line also Higgs, QED, and non-resonant corrections are included. The solid red line includes all known
corrections. On the right, the cross section is normalized to the full cross section at a scale of 80GeV.
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Figure 5: Change of the tt̄ cross section upon variation of the top quark mass (upper left), width (upper
right), strong coupling (lower left), and top Yukawa coupling yt with κt = yt/ySM

t (lower right). The shaded
band corresponds to the normalised full cross section shown in figure 4.

4. Conclusion

For the determination of the properties of the top quark at a future electron-positron collider
a precise theory prediction is vital. Effects beyond QCD can be as big as 10% and exceed the
unertainty of the N3LO QCD prediction. The top-quark mass can be extracted from the cross
section with an uncertainty of presumably less than 100 MeV and an equally accurate measurement
of the top-quark width seems also feasible. The sensitivity to the top Yukawa coupling is small and
its determination will require a very precise knowledge of the value of the strong coupling constant.
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The code employed for the presented analysis has been made public [23] and can be downloaded
from https://www.hepforge.org/downloads/qqbarthreshold/.
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