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1. Introduction

In this talk we will present the first calculation of the production of two-jet final states in deep
inelastic scattering (DIS) to next-to-next-to-leading order accuracy [1]. A large number of dijet
events were recorded by the two HERA experiments, H1 [2, 3, 4] and ZEUS [5, 6], at DESY. At
leading order in pertubation theory, dijet production is described by the basic scattering processes
γ∗q→ qg and γ∗g→ qq̄ [7] and provides a direct measurement of parton distribution functions
(PDFs) [8]. Dijet observables are particularly suited for determining the gluon distribution inside
the proton in less well constrained regions [9]. The theory uncertainty associated with NLO predic-
tions [10, 11, 12] is larger than the experimental uncertainty on the measurements and this limits
the accuracy of extracting PDFs as well as on the determination of the strong coupling constant αS.
A NNLO calculation improves the theoretical uncertainty, reducing the discrepancy between ex-
perimental and theoretical errors. The QCD amplitudes required for a prediction at NNLO are: the
two-loop amplitudes for two-parton final states [14], the one-loop amplitudes for three-parton final
states [15] and the tree-level amplitudes for four-parton final states [16]. Real radiations as well as
virtual corrections exhibit infrared divergences that have to be handled correctly to enable numer-
ical phase space integration. In our implementation we use the Antenna Subtraction formalism.
This subtraction formalism and our results will be discussed in the following sections.

2. Antenna Subtraction

A general NNLO cross section can written as follows:

dσLO =
∫

dΦm

dσB (2.1)

dσNLO =
∫

dΦm+1

dσ
R
NLO +

∫
dΦm

dσ
V
NLO

dσNNLO =
∫

dΦm+2

dσ
RR
NNLO +

∫
dΦm+1

dσ
RV
NNLO +

∫
dΦm

dσ
VV
NNLO,

where dΦm is phase space measure of the leading order process with m partons in the final state.
In dimensionsal regularisation, the virtual corrections contain explicit infrared poles in the dimen-
sional regularization parameter ε , whereas real emissions develop singularities in unresolved mo-
mentum configurations. By the KLN theorem these singularities are equal and opposite in sign,
such that the sum of corrections at any order is infrared finite. One method to extract and cancel
infrared singularities at and across different partonic multiplicities, enabling numerical integra-
tion, is Antenna Subtraction [17]. Antenna Subtraction relies thereby extensively on factoristion
properties and will be discussed in the following.

In unresolved momentum configurations, colour-order QCD amplitdues factorise into products
of universal singular functions and reduced amplitudes, which only depend on the resolved mo-
menta. At NLO, where only a single particle can be unresolved, these singular functions are given
by splitting functions and soft eikonal factors in collinear and soft configurations, respectively. This
factorisation also holds at NNLO, where up to two particles can be unresolved, requiring additional
splitting functions and soft eikonal factors.
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It is also well known that the phase space factorises for appropriate linear, four-momentum
conserving mappings. At NLO, this can be expressed for hard radiators a,b and unresolved particle
i as

dΦm+1(p1, · · · , pa, pi, pb, · · · , pm+1) = dΦm(p1, · · · , p̃a, p̃b, · · · , pm+1)×dΦ3(pa, pi, pb)︸ ︷︷ ︸
antenna phase space

, (2.2)

and can be extended to NNLO, where up to two particles can become unresolved. Appropriate
mappings exist for different initial states and number of partons involved in the map.

In the antenna formalism, subtraction terms are constructed according to singularitiy factori-
sation:

Xl
m(pa, p2, · · · , pm−1, pb)|Mn(· · · , p̃a, p̃b, · · ·)|2Jn(· · · , p̃a, p̃b, · · ·), (2.3)

where Xl
m are the antenna functions containing l loops and m partons. Jn(· · · , p̃a, p̃b, · · ·) is the

jet function and Mn the reduced matrix element that may contain loops. Antenna functions are
exactly equal to the singular functions in unresolved configurations. In general, NNLO subtractions
contain antenna functions up to m = 4 and l = 0 or m = 3 and l = 1. For deep inelastic scattering
antenna functions with all partons in the final state (final-final) [17] or only one parton in the intial
state (intial-final) [18] were required. The full set of antenna functions contains all colour-ordered
infrared QCD singularities up to NNLO. Using the right combination of antenna functions, all
singularities in the unresolved phase space regions could be subtracted.

The factorisation of the phase space under the linear momentum maps is used to integrate the
antenna function over their antenna phase space

X l
m(sm) =

1

|C(ε)|m+l−2

∫
dΦXl

m
Xl

m(p1, · · · , pm). (2.4)

with

C(ε) =
(4π)εe−γε

8π2 , (2.5)

to account for coupling constant renormalisation and sm is the invariant mass of the m partons in
the antenna. The function on the left hand side of (2.4) contains poles in ε up to order 2(m+ l−2).
Combining these functions with the mass factorisation kernels from the PDFs, one can define Jl

operators [24] that match the Catani pole structure

Jl(pa, pb) = Il(pa, pb)+ f inite, (2.6)

where Il is the Catani operator [25].
Integrated subtraction terms are then used to construct part of the subtractions terms at lower

partonic multiplicities (added back in with opposite sign), enabling explicit pole cancellation against
poles of virtual matrix elements, so that the Antenna Subtraction amounts to adding a "clever“ zero
overall. For the NNLO correction this amounts to:

dσNNLO =
∫

dΦm+2

IR finite︷ ︸︸ ︷[
dσ

RR
NNLO−dσ

S
NNLO

]
+

∫
dΦm+1

IR finite︷ ︸︸ ︷[
dσ

RV
NNLO−dσ

T
NNLO

]
+
∫

dΦm

IR finite︷ ︸︸ ︷[
dσ

VV
NNLO−dσ

U
NNLO

]
,

(2.7)
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where dσS
NNLO, dσT

NNLO and dσU
NNLO are subtraction terms, rendering the double-real, real-virtual

and double-virtual corrections infrared finite. Integrated subtraction terms from dσS
NNLO are passed

to dσT
NNLO and dσU

NNLO, whereas integrated subtraction terms from dσT
NNLO are passed to dσU

NNLO.
The Antenna Subtraction method was implemented into a numerical program (parton-level

event generator), into which the jet algorithm used in the experimental measurement as well as
any type of event selection cuts were incorporated. A substantial part of the infrastructure of our
program is common to other NNLO calculations of jet production observables within the Antenna
Subtraction method [19, 20, 21, 22, 23], which are all part of a newly developed code, NNLOJET.
To validate our implementation of the tree-level and one-loop matrix elements, we compared the
NLO predictions for dijet and trijet production against SHERPA [26] (in DIS kinematics [27]),
which uses OpenLoops [28] to automatically generate the one-loop contributions at NLO. The
antenna subtraction is then verified by testing the convergence of subtraction terms and matrix
elements in all unresolved limits (as documented for example in [29]) and by the infrared pole can-
cellation between the integrated subtraction terms and the two-loop matrix elements. Furthermore,
the stability against varying a small technical cut parameter was verified.

3. Implementation and results

As a first application of our calculation, we consider the recent measurement by the H1 collab-
oration [4] of dijet production in DIS at high virtuality Q2. The measurement was performed on data
taken at the DESY HERA electron proton collider at a centre-of-mass energy of

√
s = 319 GeV.

Deep inelastic scattering events are selected by requiring the range of lepton scattering variables:
exchanged boson virtuality 150 GeV2 < Q2 <15000 GeV2 and energy transfer in the proton rest
system 0.2 < y < 0.7. The hadronic final state is boosted to the Breit frame of reference, where
the jet clustering is performed using the inclusive hadronic kT algorithm [31] with ET recombina-
tion. To ensure that the jets are contained in the calorimeter coverage, a cut on their pseudorapidity
is applied in the HERA laboratory frame: −1.0 < ηL < 2.5. Jets are accepted in the inclusive
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Figure 1: Inclusive dijet production in deep inelastic scattering as function of the average transverse mo-
mentum of the two leading jets in the Breit frame at LO, NLO, NNLO, compared to data from the H1
collaboration [4].
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Figure 2: Inclusive dijet production in deep inelastic scattering as function of the average transverse mo-
mentum of the two leading jets in the Breit frame normalized to NLO and compared to data from the H1
collaboration [4].

dijet sample if their transverse momentum in the Breit frame is 5 GeV< pT,B < 50 GeV and are
ordered in this variable. The event is retained if the invariant mass of the two leading jets is
M12 > 16 GeV. The H1 collaboration provides double differential distributions in Q2 and either the
average transverse momentum of the two leading jets 〈pT 〉2 = (pT 1,B + pT 2,B)/2 or the variable
ξ2 = x(1+M12/Q2) where x is the Bjorken variable reconstructed from the lepton kinematics. At
leading order, ξ2 can be identified with the proton momentum fraction carried by the parton that
initiated the hard scattering process.

The theoretical predictions use the NNPDF3.0 parton distribution functions [13] with αs(M2
Z)=

0.118 and are evaluated with default renormalization and factorization scales µF =
√

Q2,
µR =

√
(Q2 + 〈pT 〉2)2/2. The uncertainty on the theoretical prediction from missing higher orders

is estimated by varying these scales by a factor between 1/2 and 2. The electromagnetic coupling
is also evaluated at a dynamical scale as α(Q2) according to QED evolution, with α(100 GeV2) =

0.0075683 [30]. The theoretical predictions are corrected bin-by-bin for hadronization and elec-
troweak effects using the tables provided in [4].

Figure 1 displays the 〈pT 〉2 distribution in six Q2 bins. For better visibility, the same plots are
normalized to the NLO prediction in Figure 2, excluding the LO contribution which is typically
considerably below the NLO curve and is associated with a large error. We observe that for all but
the first bins in 〈pT 〉2, the NNLO predictions are inside the NLO uncertainty band and that their
inclusion leads to a substantial reduction of the theory uncertainty to typically 5% or less (especially
at high Q2), which is now below the statistical and systematical uncertainty on the experimental
data. We observe that the theoretical NNLO predictions tend to be above the experimental data.
This feature points to the potential impact that the inclusion of these data could have in a global
determination of parton distributions and of the strong coupling constant at NNLO accuracy. The
tension between data and NNLO predictions is largest at lower values of Q2, where the data is most
accurate and the gluon-induced subprocess dominates the dijet production cross section.

The first bins in 〈pT 〉2 display a larger correction, often at the upper boundary of the NLO band,
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and only a mild reduction in scale uncertainty. They already have very large NLO corrections,
typically with a NLO/LO ratio of about 2. This feature can be understood from a sophisticated
interplay of the M12 > 16 GeV cut with the other jet cuts. The M12 cut forbids a substantial part
of the phase space relevant to the first bin in the 〈pT 〉2 distribution to be filled by the leading order
process. This results in a perturbative instability [32] starting below 〈pT 〉2 = 8 GeV, which leads
to a destabilization of the perturbative series for the first bin.

To further illustrate this issue, we display the ξ2 distribution in the lowest bin in Q2 in Figure 3.
The same perturbative instability is present, now spread more uniformly over the first two bins. It
is more pronounced than in the 〈pT 〉2 distribution due to the fact that an even larger fraction of
the phase space is forbidden at leading order, since jets down to pT,B = 5 GeV are accepted in this
distribution, while maintaining the M12 > 16 GeV cut. The resulting instability can already be seen
in going from LO to NLO, with substantial corrections outside the nominal scale variation band.
In the bins with larger ξ2, events with low M12 close to the cut are of lower importance, resulting
in a better perturbative convergence and a more reliable prediction.
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Figure 3: Inclusive dijet production in deep inelastic scattering as function of ξ2 normalized to NLO and
compared to data from the H1 collaboration [4].

4. Conclusions

In this contribution, we reported on the first calculation of dijet production in deep inelastic
scattering to NNLO in QCD using the Antenna Subtraction method. Our results are fully differen-
tial in the kinematical variables of the final state lepton and the jets. We applied our calculation to
the kinematical situation that is relevant to a recent dijet measurement by the H1 collaboration [4].
Except for jet production at low transverse momentum (where the experimental event selection cuts
destabilize the perturbative convergence), we observe the NNLO corrections to be moderate in size,
and overlapping with the scale uncertainty band of the previously available NLO calculation. Espe-
cially at lower Q2, the NNLO predictions tend to be above the data, which could provide important
new information on the gluon distribution at NNLO. The residual uncertainty on the NNLO results
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is of the order of 5% or less, and below the errors on the experimental data. Our results enable
the inclusion of deep inelastic jet data into precision phenomenology studies of the structure of the
proton and of the strong coupling constant.
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