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We consider Feynman integrals, in perturbative quantum field theory, with evaluations that inform
both the algebraic geometry revealed by their representation as integrals over Schwinger parame-
ters and also the number theory of L-series, Ln(s), defined by products over primes of data derived
from n-th power moments of Kloosterman sums in finite fields. In co-ordinate space, Feynman
diagrams with massive propagators yield integrals of products of Bessel functions. We consider
vacuum diagrams and on-shell sunrise diagrams, with two vertices, evaluated in two spacetime
dimensions, and label integrals, Sn,s, by the number of Bessel functions, n, and the number of
loops, s. For n < 5, is is proven that Sn,s is an integer multiple of Ln(s). At n = 5,6,8, the L-series
are obtained from the Fourier series of modular forms, with weight n− 2, the sunrise integrals
Sn,n−2 evaluate to multiples of ζ (2)Ln(n−4) and the vacuum integrals Sn,n−1 enter determinants
that evaluate Ln(n−1), outside the critical strip. At n = 7, we find a functional equation for L7(s)

and obtain S7,4 = 20ζ (2)L7(2). For each n > 2, we give a conjectural evaluation of a determinant
of Feynman integrals as a rational or algebraic multiple of a power of π . Empirical evaluations
are indicated by question marks and have been checked at 1000-digit precision.
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QFT informs algebraic geometry David Broadhurst

1. Feynman integrals

We consider Feynman diagrams, like those illustrated below, evaluated, in two spacetime di-
mensions, by integrals of the form

Sn,s := 2s
∫

∞

0
[I0(t)]n−s−1[K0(t)]s+1t dt (1.1)

with n Bessel functions and loop-number s satisfying s < n ≤ 2s+ 2 and s > 1 for n = 2s+ 2,
to ensure convergence. The internal scalar particles have unit mass and account for the Bessel
function K0(t) in the integrand. Hence the two-loop vacuum integral S3,2 has a propagator K0(t)
associated with each of its three internal edges. S4,2 := 22 ∫ ∞

0 I0(t)K3
0 (t) t dt is a two-loop on-shell

sunrise diagram, with the Bessel function I0(t) coming from external half-edges, whose momenta
are on the unit mass shell. The one-loop diagram S3,1 is obtained from S3,2 by cutting an internal
edge. Removing the external half-edges from S3,1, we obtain the one-loop vacuum diagram S2,1. If
we join up the half-edges in S4,2, we obtain a three-loop vacuum diagram, S4,3.

&%
'$ss

S2,1

&%
'$ss

S3,1

&%
'$ss

S3,2

&%
'$ss

S4,2

2. L-series

For n < 8 and s with a suitably large real part, we define the L-series

Ln(s) := ∏
p≥2

1
Zn(p, p−s)

= ∑
m>0

An(m)

ms (2.1)

with a product over primes of local factors defined by [4]

Zn(p,T ) := exp

(
−∑

k>0

cn(pk)

k
T k

)
(2.2)

where cn(q) are n-th power Kloosterman moments [7, 8, 9, 10, 14] in finite fields Fq. Then (2.2) is
a polynomial in T , with degree less than n/2, and L1(s) = L2(s) = 1,

L3(s) = ∑
k≥0

(
1

(3k+1)s −
1

(3k+2)s

)
, (2.3)

L4(s) = (1−2−s)ζ (s) = ∑
k≥0

1
(2k+1)s , (2.4)

with a functional equation at n = 3 giving

Λ3(s) :=
(

3
π

)s/2

Γ

(
s+1

2

)
L3(s) = Λ3(1− s). (2.5)
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For n≤ 4, the s-loop integral Sn,s is an integer multiple [1] of Ln(s):

S1,0 = L1(0) = 1 (2.6)

S2,1 = L2(1) = 1 (2.7)

S3,1 = 2L3(1) =
2π√

33
(2.8)

S3,2 = 3L3(2) = 3 ∑
k≥0

(
1

(3k+1)2 −
1

(3k+2)2

)
(2.9)

S4,2 = 2L4(2) =
π2

4
(2.10)

S4,3 = 8L4(3) = 7ζ (3). (2.11)

3. Proofs for 5 Bessel functions

In a conference talk, Reciprocal PSLQ and the tiny nome of Bologna, given in June 2007 at
the Zentrum für interdisziplinäre Forschung in Bielefeld, an empirical evaluation [3]

S5,3 =
π3

2

(
1− 1√

5

)(
∞

∑
n=−∞

e−n2π
√

15

)4

(3.1)

was given for the on-shell 3-loop sunrise diagram in two spacetime dimensions. This implies a neat
evaluation as a product of values of the gamma function [11]

S5,3 =
1

30
√

5

3

∏
k=0

Γ

(
2k

15

)
(3.2)

by applying the Chowla-Selberg theorem to elliptic integrals at the 15th singular value [1]. Intense
work in 2007 with Jon Borwein, in Halifax, Nova Scotia, showed that (3.2) is equivalent to

S5,3 =
4π√
15

S5,2. (3.3)

Discussions with Spencer Bloch and Francis Brown, at a summer school in Les Houches, organized
by Dirk Kreimer in 2010, pointed to a connection with the weight-3 level-15 modular form

f3,15 := (η3η5)
3 +(η1η15)

3 = ∑
n>0

A5(n)qn (3.4)

with ηn := qn/24
∏k>0(1−qnk). This came from the representation of

S5,3 =
∫

∞

0

∫
∞

0

∫
∞

0

dadbdc
(abc+ab+bc+ ca)(a+b+ c)+ab+bc+ ca

(3.5)

as an integral over Schwinger parameters. Then counts of the zeros of the denominator of the
integrand, in finite fields Fp, implicated the Fourier coefficients A5(p) = c5(p) of f3,15, at small
prime p. The L-series obtained by setting n = 5 in (2.1) has a functional equation

Λ5(s) :=
(

15
π2

)s/2

Γ

( s
2

)
Γ

(
s+1

2

)
L5(s) = Λ5(3− s) (3.6)
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and analytic continuation yields the evaluations

S5,2 = 3L5(2) (3.7)

S5,3 =
48
5

ζ (2)L5(1). (3.8)

All of the above results are proven, thanks to work in [1, 2, 12, 13].

4. Conjectures for 5 Bessel functions

The 4-loop vacuum integral with 5 Bessel functions has a representation

S5,4 = 2
∫

∞

0

∫
∞

0

∫
∞

0

log(a+b+ c+1)dadbdc
(abc+ab+bc+ ca)(a+b+ c)+ab+bc+ ca

(4.1)

with the same denominator as for S5,3 in (3.5), but a logarithmic numerator, resulting from inte-
gration over an extra Schwinger parameter. This resisted 8 years of effort to find a relation to the
L-series L5(s) until the authors met at the Mainz Institute for Theoretical Physics in 2015 and exper-
imented with determinants of matrices of Bessel moments. On the basis of numerical investigation,
we arrived at the conjectures

det
∫

∞

0
I0(t)K3

0 (t)

[
K0(t) t2K0(t)
I0(t) t2I0(t)

]
t dt ?

=
2π3
√

3353
(4.2)

det
∫

∞

0
K3

0 (t)

[
K2

0 (t) t2K2
0 (t)

I2
0 (t) t2I2

0 (t)

]
t dt ?

=
45

8π2 L5(4) (4.3)

with question marks indicating that these evaluations are as yet unproven. Conjectures (4.2,4.3)
may be combined with proven results to obtain the striking evaluation

L5(4)
L5(2)ζ (2)

?
=

4
5

∫
∞

0
(R− t2)K5

0 (t) t dt (4.4)

R := 13
(

2
15

)2

+32
3

∏
k=0

Γ(1−2k/15)
Γ(2k/15)

. (4.5)

5. Conjectures for 6 Bessel functions

At n = 6, the first author found, with help from Francis Brown at Les Houches in 2010, a
modular form of weight 4 and level 6

f4,6 := (η1η2η3η6)
2 = ∑

n>0
A6(n)qn (5.1)

with A6(p) = c6(p) at the primes agreeing with counts in Fp of zeros of the denominator of the
Feynman integrand for the 4-loop sunrise diagram S6,4, with 6 Bessel functions. Then the functional
equation

Λ6(s) :=
(

6
π2

)s/2

Γ

( s
2

)
Γ

(
s+1

2

)
L6(s) = Λ6(4− s) (5.2)
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yielded the conjectures [5]

S6,2
?
= 6L6(2) (5.3)

S6,3
?
= 12L6(3) = 24ζ (2)L6(1) (5.4)

S6,4
?
= 48ζ (2)L6(2) (5.5)

which have been checked at 1000-digit precision. It is notable that S6,4 is pulled down to L6(2), by
a multiple of ζ (2). Hence conjectures (5.3,5.5) imply the sum rule [1]∫

∞

0
I0(t)K3

0 (t)
(
π

2I2
0 (t)−3K2

0 (t)
)

t dt ?
= 0. (5.6)

It was harder to relate Feynman integrals to L6(5), outside the critical strip. This problem was
cracked by using determinants in conjectures

det
∫

∞

0
I0(t)K4

0 (t)

[
K0(t) t2K0(t)
I0(t) t2I0(t)

]
t dt ?

=
5
32

ζ (4) (5.7)

det
∫

∞

0
K4

0 (t)

[
K2

0 (t) t2K2
0 (t)

I2
0 (t) t2I2

0 (t)

]
t dt ?

=
27

4π2 L6(5) (5.8)

that neatly follow the pattern discovered at n = 5, in (4.2,4.3).

6. Conjectures for 7 Bessel functions

Until last year, no relation between L-series and Feynman integrals with 7 Bessel functions
had been discovered. Working at Mainz, we used Kloosterman sums in Fq to determine the local
factors (2.2) in the L-series

L7(s) := ∏
p≥2

1
Z7(p, p−s)

= ∑
n>0

A7(n)
ns (6.1)

and sought a functional relation that would allow analytic continuation to critical values with 0 <

s < 5. Crucial in this endeavour were the determinations of the local factors [4]

Z7(2,2−s) =

(
1− 1

2s−2

)(
1+

5
2s−2 +

1
22s−4

)
(6.2)

Z7(3,3−s) = 1− 10
3s−2 +

1
32s−4 (6.3)

Z7(5,5−s) = 1− 1
52s−4 (6.4)

Z7(7,7−s) = 1− 10
7s−3 +

1
72s−4 (6.5)

at p ≤ 7, where Ronald Evans had been silent [7]. Thereafter, it was sufficient to use Sage, with
commands kindly provided by William Stein, to determine local factors from Hecke eigenvalues,
λp ∈Q(

√
−1,
√

6,
√

14), at prime p, of a newform on Γ0(525), with weight 3 and quartic nebenty-
pus, that gives |λp|2 = p2±A7(p), for a Kronecker symbol

( p
105

)
=±1, and hence

Z7(p, p−s) =
(

1−
( p

105

)
p2−s

)(
1+
( p

105

)
(2p2−|λp|2)p−s + p4−2s

)
(6.6)

4
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for p > 7. Having determined A7(n) for n≤ 105, we used Tim Dokchitser’s code [6] computel,
in Pari-GP, to determine the viability of a functional equation

Λ7(s) :=
(

105
π3

)s/2

Γ

(
s−1

2

)
Γ

( s
2

)
Γ

(
s+1

2

)
L7(s)

?
= Λ7(5− s) (6.7)

with the crucial factor Γ((s−1)/2) found empirically. Then computel professed itself ready to
compute L7(s) and was used at low precision to determine a conjectural integer 20 in

S7,4 := 24
∫

∞

0
I2
0 (t)K

5
0 (t) t dt ?

= 20ζ (2)L7(2) (6.8)

which was then confirmed to 1000-digit precision, in less than 7 hours. The 4-loop Feynman
integral S7,4 is the sole integral with 7 Bessel functions that we have been able to relate to L7(s). It
is not hard to see why there is only one. The factor Γ((s− 1)/2) in the functional equation (6.7)
seems to render s = 1 and hence s = 5−1 = 4 inaccessible. Inside the critical strip, with 0 < s < 5,
that leaves only s = 2, which is equivalent to s = 5−2 = 3, by the functional equation.

6.1 Determinants of Feynman integrals with an odd number of Bessel functions

With n= 7 Bessel functions, no determinant was found to permit an excursion to s= 6, outside
the critical strip. However a 3×3 matrix of moments of 7 Bessel functions,

M3 :=
∫

∞

0
I0(t)K4

0 (t)

 K2
0 (t) t2K2

0 (t) t4K2
0 (t)

I0(t)K0(t) t2I0(t)K0(t) t4I0(t)K0(t)
I2
0 (t) t2I2

0 (t) t4I2
0 (t)

 t dt (6.9)

gave the intriguing numerical result

detM3
?
=

24π6
√

335577
(6.10)

with the square root of 335577 resonating with the square root of 3355 in (4.2). More generally, we
define Mk to be the k× k matrix with elements

(Mk)a,b :=
∫

∞

0
[I0(t)]a[K0(t)]2k+1−at2b−1dt (6.11)

and conjecture that

detMk
?
=

k

∏
j=1

(2 j)k− jπ j√
(2 j+1)2 j+1

. (6.12)

7. Conjectures for 8 Bessel functions

At n = 8, we need to modify the definition (2.1), which served well for n < 8. The first author
discovered that the modular form

f6,6 =

(
η3

2 η3
3

η1η6

)3

+

(
η3

1 η3
6

η2η3

)3

= ∑
n>0

A8(n)qn (7.1)

5
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with weight 6 and level 6, gives A8(p) ≡ c8(p) mod p, at the primes. However, we do not have
equality between An(p) and cn(p) for n = 8 and prime p > 2. Instead we found that

c8(p) =

{
A8(p) if p = 2

p4 +A8(p) if p > 2
(7.2)

and hence that

L8(s) := ∏
p≥2

Z4(p, p4−s)

Z8(p, p−s)
= ∑

n>0

A8(n)
ns (7.3)

is the L-series corresponding to the modular form (7.1), as was recently proven by Yun [14]. Then
the functional equation

Λ8(s) :=
(

6
π2

)s/2

Γ

( s
2

)
Γ

(
s+1

2

)
L8(s) = Λ8(6− s) (7.4)

enables analytic continuation inside the critical strip, 0 < s < 6, where we find that

S8,3
?
= 8L8(3) (7.5)

S8,4
?
= 36L8(4) (7.6)

S8,5
?
= 216L8(5) (7.7)

S8,6
?
= 864ζ (2)L8(4). (7.8)

7.1 Determinants of Feynman integrals with an even number of Bessel functions

Now consider the 3×3 matrix

N3 :=
∫

∞

0
I0(t)K5

0 (t)

 K2
0 (t) t2K2

0 (t) t4K2
0 (t)

I0(t)K0(t) t2I0(t)K0(t) t4I0(t)K0(t)
I2
0 (t) t2I2

0 (t) t4I2
0 (t)

 t dt (7.9)

obtained by adding an extra K0(t) to the integrand in (6.9). The elements of its first column are
evaluated by S8,6, in (7.8), by S8,5, in (7.7), and by S8,4, in (7.6). The elements in its first row are
related to those in its third row, by the conjecture [4] that, for positive integer n,

A(n) :=
(

2
π

)4 ∫ ∞

0

(
π

2I2
0 (t)−K2

0 (t)
)

I0(t)K5
0 (t)(2t)2n−1dt (7.10)

yields integers, with A(1) = 0, A(2) = 1 and A(3) = 2. Thus we have 5 relations constraining the 9
elements. There is a 6th empirical constraint:

detN3
?
=

5
3

π8

219 . (7.11)

More generally, let Nk be the k× k matrix with elements

(Nk)a,b :=
∫

∞

0
[I0(t)]a[K0(t)]2k+2−at2b−1dt, (7.12)

which are moments of 2k+2 Bessel functions. For integer m > 0, let

Dm :=
2πm2/2

Γ(m/2)

m

∏
j=1

(2 j−1)m− j

(2 j) j . (7.13)

Then for every integer k > 0, we conjecture that determinant of Nk is Dk+1.
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7.2 Evaluation of an L-series of weight 6 outside its critical strip

From the rationality of the moments (7.10), we were led to conjecture, and to test at 1000-digit
precision, that the determinant of the 2×2 matrix

M2 :=
∫

∞

0
K6

0 (t)

[
K2

0 (t) t2(1−2t2)K2
0 (t)

I2
0 (t) t2(1−2t2)I2

0 (t)

]
t dt (7.14)

with 8-Bessel moments up to 7 loops, evaluates the L-series (7.3) for modular form (7.1), with
weight 6, outside its critical strip, as follows:

L8(7)
?
=

128π2

6075
detM2. (7.15)
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